-
公开(公告)号:CN114920960B
公开(公告)日:2023-06-16
申请号:CN202210648858.3
申请日:2022-06-09
Applicant: 吉林大学
Abstract: 本发明涉及高分子材料技术领域,提供了一种聚芳醚酮树脂或其复合材料超细粉的制备方法。本发明将聚芳醚酮树脂或其复合材料的原料加入二苯砜溶液中加热溶解,然后降温至250~260℃,使体系变浑浊,并在该温度下快速搅拌4~6h,之后继续降温至200~210℃并出料于去离子水中,再通过洗涤和离心即可得到超细粉。本发明通过控制温度使得聚醚醚酮树脂链段能够在溶剂中缓慢排列结晶,形成微小粒子,之后通过控制出料温度,使得溶液中的PEEK树脂或者复合材料在微小粒子表面析出,进一步调节超细粉的粒径。本发明提供的方法工艺简单、生产效率高、成本低,且对聚芳醚酮树脂的分子量没有要求,适用于各种分子量的聚芳醚酮树脂。
-
公开(公告)号:CN115926168A
公开(公告)日:2023-04-07
申请号:CN202211510845.6
申请日:2022-11-29
Applicant: 吉林大学
IPC: C08G75/23
Abstract: 本发明涉及高分子材料技术领域,提供了一种聚芳醚砜树脂及其制备方法。本发明创造性的将联‑(4‑氯二苯砜)与联苯二酚和含扭矩结构的功能基团(双酚芴)进行三元共聚,通过少量刚性扭矩结构的引入,在提高聚芳醚砜玻璃化转变温度的同时,提高了聚芳醚砜材料的透光率和溶解性,成功制备出耐高温、高透明的聚芳醚砜材树脂,同时该聚芳醚砜材树脂还具有优异的机械性能。实施例结果表明,本发明提供的聚芳醚砜树脂玻璃化转变温度可达280℃以上,可以满足高温环境下对于聚芳醚砜树脂的使用需求。
-
公开(公告)号:CN112812293B
公开(公告)日:2021-12-07
申请号:CN202011609874.9
申请日:2020-12-30
Applicant: 吉林大学
Abstract: 本发明提供了一种结晶型含萘聚芳酰胺高温储能薄膜介电材料及其制备方法和应用,属于聚合物介电材料技术领域。本发明提供的结晶型含萘聚芳酰胺高温储能薄膜介电材料,萘环的引入可以改善其溶解性,醚键的引入可以增加链段的柔韧性,同时少量刚性苯环的加入能够增加主链的刚性,通过调节刚性链段的比例,使得聚芳酰胺具有结晶的特性,这种结晶型的含萘聚芳酰胺同时具备耐高温、高能量密度以及高充放电效率等优势。实施例的结果表明,本发明提供的结晶型含萘聚芳酰胺高温储能薄膜介电材料在200℃高温下,放电能量密度为2.2J/cm3,在纯聚合物介电材料中具有着不可比拟的地位。
-
公开(公告)号:CN113234221A
公开(公告)日:2021-08-10
申请号:CN202110505158.4
申请日:2021-05-10
Applicant: 吉林大学
Abstract: 本发明提供了一种含芴含氟聚芳醚及其制备方法和应用,属于摩擦电纳米发电机材料技术领域。本发明提供的含芴含氟聚芳醚中含有大量的氟及芳环结构,强电负性氟和大量芳环结构的存在有利于摩擦电荷的产生和摩擦电电荷的稳定,进而有利于提高摩擦电纳米发电机的输出性能。同时,芳环结构的存在使含芴含氟聚芳醚具有优异的热稳定性及输出性能稳定性。实施例的结果表明,利用本发明提供的含芴含氟聚芳醚制备得到的聚合物薄膜具有优异的热稳定性和摩擦电输出性能,适合作为摩擦电材料。
-
公开(公告)号:CN114920960A
公开(公告)日:2022-08-19
申请号:CN202210648858.3
申请日:2022-06-09
Applicant: 吉林大学
Abstract: 本发明涉及高分子材料技术领域,提供了一种聚芳醚酮树脂或其复合材料超细粉的制备方法。本发明将聚芳醚酮树脂或其复合材料的原料加入二苯砜溶液中加热溶解,然后降温至250~260℃,使体系变浑浊,并在该温度下快速搅拌4~6h,之后继续降温至200~210℃并出料于去离子水中,再通过洗涤和离心即可得到超细粉。本发明通过控制温度使得聚醚醚酮树脂链段能够在溶剂中缓慢排列结晶,形成微小粒子,之后通过控制出料温度,使得溶液中的PEEK树脂或者复合材料在微小粒子表面析出,进一步调节超细粉的粒径。本发明提供的方法工艺简单、生产效率高、成本低,且对聚芳醚酮树脂的分子量没有要求,适用于各种分子量的聚芳醚酮树脂。
-
公开(公告)号:CN114644829A
公开(公告)日:2022-06-21
申请号:CN202210304936.8
申请日:2022-03-25
Applicant: 吉林大学
Abstract: 本发明提供了一种聚芳酰胺/聚醚酰亚胺高温储能共混薄膜介电材料及其制备方法和应用,属于聚合物基电介质材料技术领域。由聚芳酰胺和聚醚酰亚胺制得,本发明通过将具有氢键的芳香族聚酰胺(聚芳酰胺)与聚醚酰亚胺进行共混,利用聚芳酰胺与PEI中的羰基形成氢键作用来限制PEI基体的β‑松弛,从而改善PEI基复合材料的高温储能性能,本发明提供的聚芳酰胺/聚醚酰亚胺高温储能共混薄膜介电材料是一种全有机共混电介质材料,显著抑制了PEI高温下的β‑松弛,降低了高温下的漏导电流和能量损耗,并且同时具备高击穿强度、高能量密度以及高充放电效率等优势,能够满足现在及未来对高温聚合物电介质储能材料的需求。
-
公开(公告)号:CN113736044A
公开(公告)日:2021-12-03
申请号:CN202111140603.8
申请日:2021-09-28
Applicant: 吉林大学
Abstract: 本发明提供了3D打印级聚醚醚酮树脂专用料及制备和应用、3D打印层间增强聚醚醚酮合金材料及制备,属于3D打印材料技术领域。本发明采用耐温等级更高的4‑氟基二苯砜作为封端基团,使得聚醚醚酮树脂具有非常稳定的含氟端基,能够使聚醚醚酮在更高温度的加工条件下保持良好的流动性和稳定性,以满足3D打印高温加工的需求。另外,将该专用料与层间增强改性剂共混,制备的3D打印层间增强聚醚醚酮合金材料在保持聚醚醚酮优良机械性能的同时还大幅提高了层间粘结强度。
-
公开(公告)号:CN113698590A
公开(公告)日:2021-11-26
申请号:CN202111092604.X
申请日:2021-09-17
Applicant: 吉林大学
IPC: C08G65/40
Abstract: 本发明提供了一种可熔融加工封端含氟聚芳醚树脂及其制备方法和应用,属于高分子材料技术领域。本发明采用含有单氟基团的稳定芳香单体作为封端剂,利用封端剂含有两个或单个氟基团的结构,充分消除活性的酚羟基端基,降低十氟联苯在高温熔融加工过程中侧位氟基团与活性端基发生支化交联的情况,改善熔融加工过程中因产生支化交联结构而影响熔体流动性和稳定性的问题,实现含氟聚芳醚聚合物的熔融加工,为获得具有高热稳定性的体型材料提供了新思路。
-
公开(公告)号:CN112812293A
公开(公告)日:2021-05-18
申请号:CN202011609874.9
申请日:2020-12-30
Applicant: 吉林大学
Abstract: 本发明提供了一种结晶型含萘聚芳酰胺高温储能薄膜介电材料及其制备方法和应用,属于聚合物介电材料技术领域。本发明提供的结晶型含萘聚芳酰胺高温储能薄膜介电材料,萘环的引入可以改善其溶解性,醚键的引入可以增加链段的柔韧性,同时少量刚性苯环的加入能够增加主链的刚性,通过调节刚性链段的比例,使得聚芳酰胺具有结晶的特性,这种结晶型的含萘聚芳酰胺同时具备耐高温、高能量密度以及高充放电效率等优势。实施例的结果表明,本发明提供的结晶型含萘聚芳酰胺高温储能薄膜介电材料在200℃高温下,放电能量密度为2.2J/cm3,在纯聚合物介电材料中具有着不可比拟的地位。
-
公开(公告)号:CN113736044B
公开(公告)日:2022-11-15
申请号:CN202111140603.8
申请日:2021-09-28
Applicant: 吉林大学
Abstract: 本发明提供了3D打印级聚醚醚酮树脂专用料及制备和应用、3D打印层间增强聚醚醚酮合金材料及制备,属于3D打印材料技术领域。本发明采用耐温等级更高的4‑氟基二苯砜作为封端基团,使得聚醚醚酮树脂具有非常稳定的含氟端基,能够使聚醚醚酮在更高温度的加工条件下保持良好的流动性和稳定性,以满足3D打印高温加工的需求。另外,将该专用料与层间增强改性剂共混,制备的3D打印层间增强聚醚醚酮合金材料在保持聚醚醚酮优良机械性能的同时还大幅提高了层间粘结强度。
-
-
-
-
-
-
-
-
-