-
公开(公告)号:CN116503428B
公开(公告)日:2023-09-08
申请号:CN202310759859.X
申请日:2023-06-27
Applicant: 吉林大学
Abstract: 基于精细化全局注意力机制图像特征提取方法和分割方法,属于图像分割技术领域,解决图像分割的神经网络中注意力机制对于特征的提取不充分以及参数量过多问题。本发明的方法包括:在计算精细化通道注意力时,在进行特征浓缩时引入了具有不同空洞大小的空洞卷积;将不同空洞大小的空洞卷积共享权重;将深度可分离卷积中的逐通道卷积与空洞卷积结合,使得每一次卷积操作只需要在一个通道上进行计算;在计算精细化空间注意力时,将特征图进行了分组,每一组分别计算注意力权重,最后每一组都能得到一个注意力图。每一组生成的注意力图只对各自组进行权重赋予。本发明适用于医学图像的特征提取和分割。
-
公开(公告)号:CN116503428A
公开(公告)日:2023-07-28
申请号:CN202310759859.X
申请日:2023-06-27
Applicant: 吉林大学
Abstract: 基于精细化全局注意力机制图像特征提取方法和分割方法,属于图像分割技术领域,解决图像分割的神经网络中注意力机制对于特征的提取不充分以及参数量过多问题。本发明的方法包括:在计算精细化通道注意力时,在进行特征浓缩时引入了具有不同空洞大小的空洞卷积;将不同空洞大小的空洞卷积共享权重;将深度可分离卷积中的逐通道卷积与空洞卷积结合,使得每一次卷积操作只需要在一个通道上进行计算;在计算精细化空间注意力时,将特征图进行了分组,每一组分别计算注意力权重,最后每一组都能得到一个注意力图。每一组生成的注意力图只对各自组进行权重赋予。本发明适用于医学图像的特征提取和分割。
-