一种基于多元融合触觉再现的纸币数字防伪方法

    公开(公告)号:CN115830295A

    公开(公告)日:2023-03-21

    申请号:CN202211461800.4

    申请日:2022-11-17

    Applicant: 吉林大学

    Abstract: 本发明涉及一种基于多元融合触觉再现的纸币数字防伪方法,属于信息安全和人机交互的交叉领域。包括触觉特征的提取,采用BP神经网络模型将触觉特征“配方”化,用户的解密,将得到的渲染模型信息和配方信息发送到触觉特征渲染单元中,将配方信息中的权重分配到渲染模型信息,得到有权重的渲染模型信息,再将得到的有权重的渲染模型信息发送到信号驱动单元,得到可以在触觉交互界面实现触觉再现的触觉驱动信号,实现触觉再现的功能,从而实现多元融合的触觉防伪。有益效果是提出一种基于形状、纹理、温度等触觉融合的“配方”,给用户最真的裸指触觉反馈,可应用在数字人民币的防伪、数字专辑的真伪、数字车票的真伪等方向。

    一种基于attention模块的多模态的生物识别方法

    公开(公告)号:CN115995121A

    公开(公告)日:2023-04-21

    申请号:CN202211367427.6

    申请日:2022-11-02

    Applicant: 吉林大学

    Abstract: 本发明涉及一种基于attention模块的多模态的生物识别方法,属于计算机生物识别领域。包括数据采集和预处理阶段、神经网络模型训练和验证阶段、attention模块特征融合阶段和部署应用阶段。优点是采用多模态生物特征进行身份识别,弥补了单个模态上生物特征不充分和单模态生物特征不安全的问题,多模态之间进行相互影响,有助于提取到更加全面有效的生物特征,提取方法中采用arcloss函数作为损失函数,相较于softmax loss损失函数,提升了模型识别率,基于特征层融合的过程中采用attention机制的思想,具有更好的特征融合性能,同时相较于传统的给每一个模态的特征学习一个权重,然后将特征进行加权级联,这样使每一个模态的特征都能更好的发挥作用。

Patent Agency Ranking