微型离子推力器放电室防沉积的结构

    公开(公告)号:CN113236516A

    公开(公告)日:2021-08-10

    申请号:CN202110732225.6

    申请日:2021-06-30

    IPC分类号: F03H1/00

    摘要: 本发明公开了一种微型离子推力器放电室防沉积的结构,包括微型离子推力器的放电室、绝缘陶瓷套筒、绝缘陶瓷凸台结构和紧固件。绝缘陶瓷套筒包括套筒本体和法兰端面,套筒本体穿过放电室底板中部的通孔,法兰端面与放电室底板朝外的一侧贴合;绝缘陶瓷凸台结构具有阶梯面和凸台面,凸台面与放电室底板朝内的一侧贴合,阶梯面与放电室底板之间形成第一空隙,绝缘陶瓷凸台结构的外缘与阳极之间留有间隙;紧固件用于使绝缘陶瓷套筒和绝缘陶瓷凸台结构夹紧放电室底板。相比于现有技术,本发明通过设置第一空隙的方式破坏了溅射金属颗粒沉积层的连续性,保证陶瓷板的绝缘性,进而保证了放电室主阴极和阳极之间的绝缘性。

    降低微型离子电推力器中原初电子损耗的方法及结构

    公开(公告)号:CN113357110B

    公开(公告)日:2022-11-04

    申请号:CN202110750065.8

    申请日:2021-07-02

    IPC分类号: F03H1/00

    摘要: 本发明公开了一种降低微型离子电推力器中原初电子损耗的方法,将微型离子电推力器的放电室中磁极处的阳极成为磁极阳极,将微型离子电推力器的放电室中磁极处的阳极成为非磁极阳极;使磁极阳极与非磁极阳极彼此独立,并使磁极阳极的电位低于非磁极阳极的电位。降低微型离子电推力器中原初电子损耗的结构,包括由下至上依次固设在微型离子电推力器的放电室上的第一阳极、第二阳极、第三阳极和第四阳极,微型离子电推力器的放电室上由上至下固设有第一磁极和第二磁极,第一磁极与第二磁极之间具有间隔,第一磁极与第四阳极的持平,第二磁极与第二阳极持平。本发明能够有效降低原初电子在磁极处的损失。

    一种微型离子推力器的栅极组件装配结构及装配方法

    公开(公告)号:CN113279930A

    公开(公告)日:2021-08-20

    申请号:CN202110731821.2

    申请日:2021-06-30

    IPC分类号: F03H1/00

    摘要: 本发明公开一种微型离子推力器的栅极组件装配结构及装配方法,包括陶瓷底座、屏栅、加速栅和陶瓷垫片,陶瓷底座通过螺栓固定在推力器主体上,屏栅和加速栅安装在陶瓷底座上;屏栅和加速栅均由圆形金属薄片经化学刻蚀加工而成,屏栅和加速栅的一面保持平整,另一面为刻蚀区域形成的凹槽,且屏栅和加速栅上的刻蚀区域与推力器主体的截面积相等;屏栅和加速栅上的刻蚀区域内加工有栅极孔;屏栅带有凹槽的一侧朝向推力器主体并直接放置在陶瓷底座上,陶瓷垫片设置于屏栅和加速栅之间,加速栅具有凹槽的一侧朝向外部;陶瓷垫片与屏栅的厚度之差即为两个栅极之间的距离。本发明能够简化栅极组件安装方式并避免各组件之间出现短路现象。

    一种阶梯栅极、栅极结构、阶梯栅极参数确定方法及系统

    公开(公告)号:CN113606103B

    公开(公告)日:2022-07-05

    申请号:CN202110871762.9

    申请日:2021-07-30

    IPC分类号: F03H1/00

    摘要: 本发明涉及一种阶梯栅极、栅极结构、阶梯栅极参数确定方法及系统,将栅极设计成阶梯状结构,阶梯栅极沿径向划分为中心区、过渡区和边缘区,中心区、过渡区和边缘区的厚度依次减小,中心区、过渡区和边缘区到另一个栅极的间距依次增大,实现栅极沿径向的间距变化,不同区域的栅极间距不同,使得不同径向位置的等离子体鞘有合适强度的加速电场,能够保证在不同位置离子束都能实现良好的聚焦。

    一种应用于推力器的主阴极的装配结构及其装配方法

    公开(公告)号:CN113357114B

    公开(公告)日:2022-05-06

    申请号:CN202110813110.X

    申请日:2021-07-19

    IPC分类号: F03H1/00

    摘要: 本发明公开一种应用于推力器的主阴极的装配结构及其装配方法,主阴极通过绝缘底座安装在连接底座上,使得主阴极与连接底座之间保持绝缘状态,由于连接底座呈环形结构,且环形结构沿周向开设有若干个贯穿其侧壁的开槽,开槽中可更换设有不同长度的定位件,定位件插接在开槽中,并封堵开槽和绝缘底座的间隙,绝缘底座通过与其相连接的搭接件搭接在定位件上,那么通过更换不同长度的定位件,改变搭接件在连接底座上的轴向位置,进而带动绝缘底座改变其在连接底座上的轴向位置,以能够保证主阴极与连接底座间绝缘密封的同时,能够频繁改变主阴极相对于推力器放电室的轴向位置,满足在推力器的实验研究。

    一种磁聚焦霍尔推力器的线圈固化方法

    公开(公告)号:CN111091967B

    公开(公告)日:2021-11-19

    申请号:CN201811242935.5

    申请日:2018-10-24

    IPC分类号: H01F41/12

    摘要: 一种磁聚焦霍尔推力器的线圈固化方法,霍尔电推力器技术领域。为了解决霍尔推力器在高真空环境中工作时,励磁线圈中心区域温度过高的问题,本发明提供了一种磁聚焦霍尔推力器的线圈固化方法,在所述线圈绕制过程中,在线圈表面喷涂导热填充物,然后进行加热固化,所述导热填充物由耐高温涂料和导热物质制成,导热物质为纳米氧化物或六方氮化硼。本发明方法有助于磁聚焦霍尔推力器长期稳定在轨运行。

    降低微型离子电推力器中原初电子损耗的方法及结构

    公开(公告)号:CN113357110A

    公开(公告)日:2021-09-07

    申请号:CN202110750065.8

    申请日:2021-07-02

    IPC分类号: F03H1/00

    摘要: 本发明公开了一种降低微型离子电推力器中原初电子损耗的方法,将微型离子电推力器的放电室中磁极处的阳极成为磁极阳极,将微型离子电推力器的放电室中磁极处的阳极成为非磁极阳极;使磁极阳极与非磁极阳极彼此独立,并使磁极阳极的电位低于非磁极阳极的电位。降低微型离子电推力器中原初电子损耗的结构,包括由下至上依次固设在微型离子电推力器的放电室上的第一阳极、第二阳极、第三阳极和第四阳极,微型离子电推力器的放电室上由上至下固设有第一磁极和第二磁极,第一磁极与第二磁极之间具有间隔,第一磁极与第四阳极的持平,第二磁极与第二阳极持平。本发明能够有效降低原初电子在磁极处的损失。

    一种磁聚焦霍尔推力器的线圈固化方法

    公开(公告)号:CN111091967A

    公开(公告)日:2020-05-01

    申请号:CN201811242935.5

    申请日:2018-10-24

    IPC分类号: H01F41/12

    摘要: 一种磁聚焦霍尔推力器的线圈固化方法,霍尔电推力器技术领域。为了解决霍尔推力器在高真空环境中工作时,励磁线圈中心区域温度过高的问题,本发明提供了一种磁聚焦霍尔推力器的线圈固化方法,在所述线圈绕制过程中,在线圈表面喷涂导热填充物,然后进行加热固化,所述导热填充物由耐高温涂料和导热物质制成,导热物质为纳米氧化物或六方氮化硼。本发明方法有助于磁聚焦霍尔推力器长期稳定在轨运行。

    一种微型离子推力器的栅极组件装配结构及装配方法

    公开(公告)号:CN113279930B

    公开(公告)日:2022-07-12

    申请号:CN202110731821.2

    申请日:2021-06-30

    IPC分类号: F03H1/00

    摘要: 本发明公开一种微型离子推力器的栅极组件装配结构及装配方法,包括陶瓷底座、屏栅、加速栅和陶瓷垫片,陶瓷底座通过螺栓固定在推力器主体上,屏栅和加速栅安装在陶瓷底座上;屏栅和加速栅均由圆形金属薄片经化学刻蚀加工而成,屏栅和加速栅的一面保持平整,另一面为刻蚀区域形成的凹槽,且屏栅和加速栅上的刻蚀区域与推力器主体的截面积相等;屏栅和加速栅上的刻蚀区域内加工有栅极孔;屏栅带有凹槽的一侧朝向推力器主体并直接放置在陶瓷底座上,陶瓷垫片设置于屏栅和加速栅之间,加速栅具有凹槽的一侧朝向外部;陶瓷垫片与屏栅的厚度之差即为两个栅极之间的距离。本发明能够简化栅极组件安装方式并避免各组件之间出现短路现象。

    微型离子推力器放电室防沉积的结构

    公开(公告)号:CN113236516B

    公开(公告)日:2022-03-04

    申请号:CN202110732225.6

    申请日:2021-06-30

    IPC分类号: F03H1/00

    摘要: 本发明公开了一种微型离子推力器放电室防沉积的结构,包括微型离子推力器的放电室、绝缘陶瓷套筒、绝缘陶瓷凸台结构和紧固件。绝缘陶瓷套筒包括套筒本体和法兰端面,套筒本体穿过放电室底板中部的通孔,法兰端面与放电室底板朝外的一侧贴合;绝缘陶瓷凸台结构具有阶梯面和凸台面,凸台面与放电室底板朝内的一侧贴合,阶梯面与放电室底板之间形成第一空隙,绝缘陶瓷凸台结构的外缘与阳极之间留有间隙;紧固件用于使绝缘陶瓷套筒和绝缘陶瓷凸台结构夹紧放电室底板。相比于现有技术,本发明通过设置第一空隙的方式破坏了溅射金属颗粒沉积层的连续性,保证陶瓷板的绝缘性,进而保证了放电室主阴极和阳极之间的绝缘性。