-
公开(公告)号:CN113160050B
公开(公告)日:2023-08-25
申请号:CN202110319609.5
申请日:2021-03-25
Applicant: 哈尔滨工业大学
IPC: G06T3/40 , G06T5/00 , G06V10/25 , G06V10/80 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/049 , G06N3/08
Abstract: 本发明公开了一种基于时空神经网络的小目标识别方法及系统,其中,该方法包括:运用超分辨率算法对原始模糊图像进行预处理,得到高画质图像序列;利用时空注意力机制对高画质图像序列的相邻帧间进行逻辑减操作,捕捉并高亮强调可疑区域;提取可疑区域中的深度特征,得到特征图时序序列;采用LSTM状态转移子网将特征图时序序列输入到置信输出的映射装置中,得到转移状态;利用分类器对转移状态进行分类,得到最终识别结果,其中,最终识别结果为目标种类和置信率。该方法随着帧序列的不断读入,模型进行自我修正,逐渐修正为正确的类别并不断提高置信率。
-
公开(公告)号:CN113160050A
公开(公告)日:2021-07-23
申请号:CN202110319609.5
申请日:2021-03-25
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于时空神经网络的小目标识别方法及系统,其中,该方法包括:运用超分辨率算法对原始模糊图像进行预处理,得到高画质图像序列;利用时空注意力机制对高画质图像序列的相邻帧间进行逻辑减操作,捕捉并高亮强调可疑区域;提取可疑区域中的深度特征,得到特征图时序序列;采用LSTM状态转移子网将特征图时序序列输入到置信输出的映射装置中,得到转移状态;利用分类器对转移状态进行分类,得到最终识别结果,其中,最终识别结果为目标种类和置信率。该方法随着帧序列的不断读入,模型进行自我修正,逐渐修正为正确的类别并不断提高置信率。
-