-
公开(公告)号:CN106532739A
公开(公告)日:2017-03-22
申请号:CN201610872365.2
申请日:2016-09-30
IPC: H02J3/24
CPC classification number: H02J3/24
Abstract: 风电机组分频段参与电力系统一次调频方法,涉及风电机组参与电网一次调频技术。目的是为了解决风电机组参与一次调频时风场经济性与调频容量相矛盾的问题。本发明首先分别使用高通滤波器和低通滤波器将电网中的高频信号和低频信号分离出来,然后在风电机组中引入惯性控制环节和下垂控制环节,根据风电场当前的弃风情况设置运行模式,所述运行模式为最优功率跟踪模式或次优功率跟踪模式,最后分别计算两种运行模式下的电磁功率参考值,将电磁功率参考值作用于转子变流器,完成风电机组分频段参与电力系统的一次调频过程。本发明所述的方法实现了风电机组在不损失出力的同时,最大限度地参与电力系统的一次调频,适用于风电机组的调频。
-
公开(公告)号:CN106532739B
公开(公告)日:2018-07-03
申请号:CN201610872365.2
申请日:2016-09-30
IPC: H02J3/24
Abstract: 风电机组分频段参与电力系统一次调频方法,涉及风电机组参与电网一次调频技术。目的是为了解决风电机组参与一次调频时风场经济性与调频容量相矛盾的问题。本发明首先分别使用高通滤波器和低通滤波器将电网中的高频信号和低频信号分离出来,然后在风电机组中引入惯性控制环节和下垂控制环节,根据风电场当前的弃风情况设置运行模式,所述运行模式为最优功率跟踪模式或次优功率跟踪模式,最后分别计算两种运行模式下的电磁功率参考值,将电磁功率参考值作用于转子变流器,完成风电机组分频段参与电力系统的一次调频过程。本发明所述的方法实现了风电机组在不损失出力的同时,最大限度地参与电力系统的一次调频,适用于风电机组的调频。
-
公开(公告)号:CN104201700B
公开(公告)日:2017-06-20
申请号:CN201410486165.4
申请日:2014-09-22
Abstract: 计及风电不确定性波动的区域电网火电调频机组配置方法,涉及一种考虑风电的火电调频机组配置方法。为了解决大规模风电并网后对系统频率稳定造成影响的问题。本发明以Mallat小波分解和重构算法为工具,进行风功率时间序列的分解和重构,基于小波多尺度的分析方法,建立秒级、分钟级风电厂功率不确定性波动的瞬时模型,给出时域瞬时表达式后,建立用于调频分析的含风电区域电网模型,基于调频分析模型,给出表征系统一、二次调频能力的表达式,基于调频能力表达式,定量分析计算系统在不同条件下的一、二次调频能力。本发明可以减小风功率波动造成的系统频率波动,维持系统频率稳定。本发明适用于考虑风电的火电调频机组配置。
-
公开(公告)号:CN104201700A
公开(公告)日:2014-12-10
申请号:CN201410486165.4
申请日:2014-09-22
Abstract: 计及风电不确定性波动的区域电网火电调频机组配置方法,涉及一种考虑风电的火电调频机组配置方法。为了解决大规模风电并网后对系统频率稳定造成影响的问题。本发明以Mallat小波分解和重构算法为工具,进行风功率时间序列的分解和重构,基于小波多尺度的分析方法,建立秒级、分钟级风电厂功率不确定性波动的瞬时模型,给出时域瞬时表达式后,建立用于调频分析的含风电区域电网模型,基于调频分析模型,给出表征系统一、二次调频能力的表达式,基于调频能力表达式,定量分析计算系统在不同条件下的一、二次调频能力。本发明可以减小风功率波动造成的系统频率波动,维持系统频率稳定。本发明适用于考虑风电的火电调频机组配置。
-
公开(公告)号:CN104577983B
公开(公告)日:2018-08-14
申请号:CN201510028352.2
申请日:2015-01-20
IPC: H02H7/045
Abstract: 本发明提供了一种风电场主变压器纵联差动保护适应性分析方法,所述方法包括步骤1:计算风电场的短路电流;步骤2:评估比率差动保护的适应性;步骤3:评估二次谐波制动保护的适应性;步骤4:评估差动速断保护的适应性。与现有技术相比,本发明提供的一种风电场主变压器纵联差动保护适应性分析方法,能够准确判断现有主变压器纵联差动保护的定值设置对风电场的适应性;给出二次谐波制动比、速断保护整定值、风电场短路容量比和风电机组运行频率偏移的优化与控制依据,提高风电场主变压器纵联差动保护的可靠性。
-
公开(公告)号:CN103592528B
公开(公告)日:2016-04-20
申请号:CN201310384289.7
申请日:2013-08-29
IPC: G01R31/00
Abstract: 本发明提供了一种基于动态轨迹灵敏度的光伏逆变器模型参数辨识方法,该方法包括以下步骤:设定所述光伏逆变器的带辨识参数;获得带辨识参数的动态轨迹灵敏度;确定带辨识参数中的主导参数;设定扰动试验方案,获得扰动试验数据,预处理所述扰动试验数据;建立光伏逆变器仿真模型,进行参数辨识。该方法针对典型的光伏逆变器结构,提出其控制参数的动态轨迹灵敏度定义方法,并设计不同的扰动试验,确定控制器的主导参数,利用现代参数辨识方法辨识主导参数,从而得到光伏逆变器的准确仿真模型。
-
公开(公告)号:CN104362628A
公开(公告)日:2015-02-18
申请号:CN201410507505.7
申请日:2014-09-28
Applicant: 浙江运达风电股份有限公司 , 国家电网公司 , 江苏省电力公司 , 中国电力科学研究院
CPC classification number: H02J3/01 , H02J3/1864 , H02J2003/001
Abstract: 一种避免大型风电场发生谐振的控制方法,包括以下步骤:1)数据测量采集与处理分析,以风电场出口为测量点,采集电压和电流数据,依次进行高通滤波HPF、离散傅里叶分解DFT信号处理,利用戴维南等效定理,求出风电场系统的谐波阻抗,对计算的谐波阻抗结果进行分析,得到谐振频率;2)并联电容器投切容量逻辑计算,在某电容器容量下以切出、投入的次序判断,电场并网点阻抗值是否位于两个阻抗中间值的±30%范围内,直至满足要求为止;3)晶闸管控制电容器组合并入电网运行。以及提供一种避免大型风电场发生谐振的控制装置。本发明能有效避免出现高次谐波谐振、消除安全隐患。
-
公开(公告)号:CN103715700A
公开(公告)日:2014-04-09
申请号:CN201310703296.9
申请日:2013-12-19
CPC classification number: Y02E10/763 , Y02E40/12
Abstract: 本发明涉及一种适用于风电场并网点电压控制的无功控制系统及控制方法,所述系统包括调度系统,所述调度系统连接风电场AVC系统,所述风电场AVC系统分别连接风电场集中SVC、测量装置和风机SCADA系统;所述风机SCADA系统与风电场内的风机相连。所述控制方法为:通过风电场并网点电压灵敏度的大小,决定AVC系统对风机的无功出力调节顺序;根据各风机的无功是否可控,确定风电场的无功可控风机总数进而确定风机的可调无功总量的上下限;确定风电场需要进行调节的无功总量Qreg,按照先风机后SVC的无功分配策略对为所述Qreg进行分配。本发明克服风电场AVC系统控制周期长的缺点,充分发挥SVC的快速响应调节能力。
-
公开(公告)号:CN105808810B
公开(公告)日:2020-08-18
申请号:CN201510892092.3
申请日:2015-12-07
Applicant: 中国电力科学研究院 , 江苏省电力公司 , 国网新疆电力公司电力科学研究院 , 国家电网公司
Inventor: 张磊 , 朱凌志 , 孙谊媊 , 陈宁 , 曲立楠 , 葛路明 , 韩华玲 , 李义岩 , 王湘艳 , 赵大伟 , 赵亮 , 姜达军 , 刘艳章 , 钱敏慧 , 施涛 , 于若英 , 罗芳
IPC: G06F30/20 , G06F111/10
Abstract: 本发明提供了一种直驱永磁同步风电机组模型构建方法,包括步骤1:将永磁同步电机的标幺化参数转换为具有SI单位制的有名值参数;步骤2:将电励磁同步电机的参数和永磁同步电机的参数进行转换;步骤3:将新的电励磁同步电机的参数进行标幺化;步骤4:用仿真软件建立恒励磁电流控制器模型,计算励磁电流初始参考值;步骤5:构建永磁同步电机模型的等效模型;步骤6:构建永磁风电机组模型。与现有技术相比,本发明提供的一种直驱永磁同步风电机组模型构建方法,采用模型库中缺失永磁电机模型的现有部分电力系统商业软件建立永磁同步电机模型或者包含永磁同步电机的相关系统,解决了因永磁同步电机模型缺失带来的现实难题。
-
公开(公告)号:CN105024402A
公开(公告)日:2015-11-04
申请号:CN201510428957.0
申请日:2015-07-20
Applicant: 国家电网公司 , 许继集团有限公司 , 许继电气股份有限公司 , 江苏省电力公司 , 中国电力科学研究院
Abstract: 本发明涉及一种双馈型风电机组高电压穿越方法,实时检测电网侧电压u,计算f(u)=k*u+A的值;当f(u)的值≤udc0时,控制直流侧母线电压给定值为udc0;当udc0<f(u)的值≤udcmax时,直流侧母线电压给定值为f(u)的值;当f(u)的值≥udcmax时,直流侧母线电压给定值为udcmax;其中,udc0为满足额定交流电压输出所需的最小直流母线电压值,udcmax为最大值,k大于1;根据确定的直流侧母线电压给定值相应地调节网侧变流器的开关元件的触发脉冲。根据电网电压的实时变化以及变化的范围相应调节直流母线电压的给定值,然后完成高电压穿越,实现在高电压状态下机组的不脱网运行。
-
-
-
-
-
-
-
-
-