一种基于李代数的欠驱动航天器姿态控制方法、设备和介质

    公开(公告)号:CN115268480B

    公开(公告)日:2023-03-31

    申请号:CN202210735836.0

    申请日:2022-06-27

    IPC分类号: G05D1/08

    摘要: 本发明提出一种基于李代数的欠驱动航天器姿态控制方法、设备和介质。本发明所述方法首先建立航天器的动力学模型和基于李代数的运动学模型;其次,提出整体的控制策略,在运动学层面假设欠驱动轴角速度为零,然后设计驱动轴的角速度指令以稳定三轴姿态,在动力学层面设计驱动轴角速度跟踪与欠驱动轴角速度阻尼的联合控制律实现完全的姿态稳定。针对欠驱动轴的角速度阻尼任务,设计了终端滑模控制律,相比传统的线性滑模控制律提高了收敛速度,也因此提高了整个控制系统的精度。

    基于姿态旋转矩阵的控制性能边界设计方法、装置及介质

    公开(公告)号:CN114329943B

    公开(公告)日:2023-01-24

    申请号:CN202111593650.8

    申请日:2021-12-23

    摘要: 本发明实施例公开了一种基于姿态旋转矩阵的控制性能边界设计方法、装置及介质;该方法包括:根据刚体本体系相对于惯性系的当前姿态旋转矩阵和刚体本体系相对于惯性系的期望姿态旋转矩阵获取针对被控刚体的姿态误差矩阵;根据所述姿态误差矩阵生成姿态误差函数;根据基于姿态旋转矩阵的无穷小转动的表达式计算姿态误差函数的导数;利用叉乘运算和迹运算的性质化简姿态误差函数的导数并导出3维姿态误差向量;根据设定的控制性能要求,对所述姿态误差向量中的每个分量进行不等式约束;利用SO(3)上的平移不变度量将所述对姿态误差向量中每个分量的不等式约束上界转化为对被控刚体在所述控制性能要求下的姿态误差边界,即控制性能边界。

    基于姿态旋转矩阵的控制性能边界设计方法、装置及介质

    公开(公告)号:CN114329943A

    公开(公告)日:2022-04-12

    申请号:CN202111593650.8

    申请日:2021-12-23

    摘要: 本发明实施例公开了一种基于姿态旋转矩阵的控制性能边界设计方法、装置及介质;该方法包括:根据刚体本体系相对于惯性系的当前姿态旋转矩阵和刚体本体系相对于惯性系的期望姿态旋转矩阵获取针对被控刚体的姿态误差矩阵;根据所述姿态误差矩阵生成姿态误差函数;根据基于姿态旋转矩阵的无穷小转动的表达式计算姿态误差函数的导数;利用叉乘运算和迹运算的性质化简姿态误差函数的导数并导出3维姿态误差向量;根据设定的控制性能要求,对所述姿态误差向量中的每个分量进行不等式约束;利用SO(3)上的平移不变度量将所述对姿态误差向量中每个分量的不等式约束上界转化为对被控刚体在所述控制性能要求下的姿态误差边界,即控制性能边界。

    一种多臂航天器变拓扑机电一体化对接装置及对接方法

    公开(公告)号:CN115072011A

    公开(公告)日:2022-09-20

    申请号:CN202210739558.6

    申请日:2022-06-28

    IPC分类号: B64G4/00 B64G1/64

    摘要: 本发明提出了一种多臂航天器变拓扑机电一体化对接装置及对接方法,属于多臂航天器系统机电一体化快速对接领域。它包括对接主体和对接受体,对接主体包括主体壳体、驱动机构、滑块、钢珠、轴向限位器、电气接头公头和导向头,驱动机构设置在主体壳体内,驱动机构与滑块相连,主体壳体沿周向开设有多个钢珠孔,钢珠设置在钢珠孔内,导向头连接在主体壳体的下方,轴向限位器数量为多个,多个轴向限位器通过连杆结构与滑块相连,电气接头公头与滑块底部相连,对接受体包括受体壳体、对接腔体和电气接头母头,受体壳体内设置对接腔体,电气接头母头设置在对接腔体底部。它主要用于多臂航天器变拓扑及快速对接。

    一种多臂航天器变拓扑机电一体化对接装置及对接方法

    公开(公告)号:CN115072011B

    公开(公告)日:2023-04-14

    申请号:CN202210739558.6

    申请日:2022-06-28

    IPC分类号: B64G4/00 B64G1/64

    摘要: 本发明提出了一种多臂航天器变拓扑机电一体化对接装置及对接方法,属于多臂航天器系统机电一体化快速对接领域。它包括对接主体和对接受体,对接主体包括主体壳体、驱动机构、滑块、钢珠、轴向限位器、电气接头公头和导向头,驱动机构设置在主体壳体内,驱动机构与滑块相连,主体壳体沿周向开设有多个钢珠孔,钢珠设置在钢珠孔内,导向头连接在主体壳体的下方,轴向限位器数量为多个,多个轴向限位器通过连杆结构与滑块相连,电气接头公头与滑块底部相连,对接受体包括受体壳体、对接腔体和电气接头母头,受体壳体内设置对接腔体,电气接头母头设置在对接腔体底部。它主要用于多臂航天器变拓扑及快速对接。

    一种基于高斯混合过程的多臂航天器模型预测控制方法、设备和介质

    公开(公告)号:CN114995132B

    公开(公告)日:2023-01-17

    申请号:CN202210582234.6

    申请日:2022-05-26

    IPC分类号: G05B13/04

    摘要: 本发明提出一种基于高斯混合过程的多臂航天器模型预测控制方法、设备和介质。模型预测控制在处理多臂航天器这类具有多种约束的复杂非线性系统方面具有优良的性能,并且被广泛地应用于地面机器人、无人机、自动驾驶等实际场景中。因此本发明基于模型预测控制进行任务空间控制器设计。此外,为了增强其抗干扰能力,利用高斯混合过程训练数据量小、训练速度快的特点,建立干扰模型并在模型预测控制中进行补偿。最后设计了推力分配方法完成平台控制。本发明提出的方法设计方便直观,具有较强的实用性。

    一种基于李代数的欠驱动航天器姿态控制方法、设备和介质

    公开(公告)号:CN115268480A

    公开(公告)日:2022-11-01

    申请号:CN202210735836.0

    申请日:2022-06-27

    IPC分类号: G05D1/08

    摘要: 本发明提出一种基于李代数的欠驱动航天器姿态控制方法、设备和介质。本发明所述方法首先建立航天器的动力学模型和基于李代数的运动学模型;其次,提出整体的控制策略,在运动学层面假设欠驱动轴角速度为零,然后设计驱动轴的角速度指令以稳定三轴姿态,在动力学层面设计驱动轴角速度跟踪与欠驱动轴角速度阻尼的联合控制律实现完全的姿态稳定。针对欠驱动轴的角速度阻尼任务,设计了终端滑模控制律,相比传统的线性滑模控制律提高了收敛速度,也因此提高了整个控制系统的精度。

    一种面向空间在轨操控的虚拟视景仿真系统

    公开(公告)号:CN114218702B

    公开(公告)日:2022-09-16

    申请号:CN202111510789.1

    申请日:2021-12-10

    摘要: 本发明提出一种面向空间在轨操控的虚拟视景仿真系统,包括中央控制系统,工控机,地面实验系统,3D建模软件,虚拟视景仿真系统,高清显示器,运动捕捉系统;采用DataSmith数据导入工具,具有种类齐全的3D模型数据导入格式,可导入当前主流的CAD/CAID软件例如SolidWorks、CATIA、UG、3DMax、C4D等所建立的3D模型,实现对机械设计、场景设计等数据的导入,满足实验设计及场景渲染的需求;采用Unreal Engine5引擎进行实时渲染,做到十分逼真的实时渲染效果;数据传输采用UDP协议,具有远程显示功能,在不同地方布置固定IP的服务器或者通过UDP穿透技术可通过互联网远程显示,根据网络延迟,实时显示的延迟效果大约在50ms级别,具有很好的远程演示效果。

    一种基于方向余弦矩阵的复杂约束下航天器姿态机动规划方法、设备和介质

    公开(公告)号:CN115092420B

    公开(公告)日:2023-02-17

    申请号:CN202210629016.3

    申请日:2022-06-06

    IPC分类号: B64G1/24

    摘要: 本发明提出一种基于方向余弦矩阵的复杂约束下航天器姿态机动规划方法、设备和介质。本发明所述方法通过时域变换,解耦了空间和时间,使得姿态约束和动力学约束逐步得到满足。首先建立基于方向余弦矩阵的航天器姿态运动学和动力学模型,并对复杂约束进行建模,从而完成对复杂约束下姿态机动问题的描述。然后在虚拟时域内进行路径规划,得到满足姿态约束和边界条件的姿态机动。最后进行运动规划,通过时域变换得到实际时域的角速度和控制力矩。本发明使用方向余弦矩阵作为姿态参数,使得规划所得结果更加直观,更易使用。

    一种基于方向余弦矩阵的复杂约束下航天器姿态机动规划方法、设备和介质

    公开(公告)号:CN115092420A

    公开(公告)日:2022-09-23

    申请号:CN202210629016.3

    申请日:2022-06-06

    IPC分类号: B64G1/24

    摘要: 本发明提出一种基于方向余弦矩阵的复杂约束下航天器姿态机动规划方法、设备和介质。本发明所述方法通过时域变换,解耦了空间和时间,使得姿态约束和动力学约束逐步得到满足。首先建立基于方向余弦矩阵的航天器姿态运动学和动力学模型,并对复杂约束进行建模,从而完成对复杂约束下姿态机动问题的描述。然后在虚拟时域内进行路径规划,得到满足姿态约束和边界条件的姿态机动。最后进行运动规划,通过时域变换得到实际时域的角速度和控制力矩。本发明使用方向余弦矩阵作为姿态参数,使得规划所得结果更加直观,更易使用。