基于CO2共电解与生物催化的发电与物质联供系统及方法

    公开(公告)号:CN114658537B

    公开(公告)日:2023-09-05

    申请号:CN202210439945.8

    申请日:2022-04-25

    摘要: 本发明提供了一种基于CO2共电解与生物催化的发电与物质联供系统及方法,该系统包括风电或光伏发电系统、水电解池、空气分离装置、氨合成模块、富氧燃烧发电模块、CO2和H2O制甲醇共电解池、CO2和H2O制甲酸共电解池、生物催化器以及CO2回收模块。本系统利用风能或太阳能产生的绿色低碳电能作为驱动力,有机结合富氧燃烧发电、CO2和H2O共电解、甲醇与甲酸经生物催化生成可降解塑料等过程,实现火力发电与CO2碳减排的兼容协同,CO2被有效地资源化利用转化为生物可降解塑料,可显著补贴碳减排成本。同时完成氨、甲醇、甲酸、生物可降解塑料等物质与电能的联合生产,是符合低碳社会发展目标的一种新型物质能源系统。

    协同多类型电解制氢与储能电池的微电网系统及运行方法

    公开(公告)号:CN115882515A

    公开(公告)日:2023-03-31

    申请号:CN202310186252.7

    申请日:2023-03-01

    摘要: 本发明提供了一种协同多类型电解制氢与储能电池的微电网系统及其运行方法。本发明的微电网系统,综合碱性电解制氢和质子交换膜电解制氢的优点,耦合大规模的碱性电解制氢作为基础负荷以及小规模的质子交换膜电解制氢作为调节系统,构成多类型电解制氢;并且耦合电化学储能电池吸收高频功率波动。本发明的微电网系统可以适应快功率波动的可再生电力,充分消纳风光发电产生的波动电能,减少风光资源的浪费。能减少可再生能源发电系统中电化学储能和质子交换膜电解制氢的容量,同时增加产氢量,降低了单位制氢成本,经济性好。还可通过回收电解制氢过程与储能电池产生的余热,提高制氢系统的综合效率。

    基于CO2共电解与生物催化的发电与物质联供系统及方法

    公开(公告)号:CN114658537A

    公开(公告)日:2022-06-24

    申请号:CN202210439945.8

    申请日:2022-04-25

    摘要: 本发明提供了一种基于CO2共电解与生物催化的发电与物质联供系统及方法,该系统包括风电或光伏发电系统、水电解池、空气分离装置、氨合成模块、富氧燃烧发电模块、CO2和H2O制甲醇共电解池、CO2和H2O制甲酸共电解池、生物催化器以及CO2回收模块。本系统利用风能或太阳能产生的绿色低碳电能作为驱动力,有机结合富氧燃烧发电、CO2和H2O共电解、甲醇与甲酸经生物催化生成可降解塑料等过程,实现火力发电与CO2碳减排的兼容协同,CO2被有效地资源化利用转化为生物可降解塑料,可显著补贴碳减排成本。同时完成氨、甲醇、甲酸、生物可降解塑料等物质与电能的联合生产,是符合低碳社会发展目标的一种新型物质能源系统。

    一种研究化学反应与相变耦合吸热过程的实验装置及方法

    公开(公告)号:CN118641541A

    公开(公告)日:2024-09-13

    申请号:CN202410892375.7

    申请日:2024-07-04

    IPC分类号: G01N21/84 G01N21/01

    摘要: 一种研究化学反应与相变耦合吸热过程的实验装置及方法,属于再生冷却实验技术领域。本发明解决了现有技术缺少用于研究化学反应与相变耦合吸热过程的实验装置及实验方法的问题。载体与加热装置正对布置且分别贴合固装在透明腔体的内壁及外壁,载体表面涂覆有催化剂涂层,储液罐及废液罐分别通过管路连接至透明腔体的两端,废液罐与透明腔体之间的管路上连接设置有冷却器及背压阀,透明腔体的上方布置有高速摄像机及光源。可以用于研究高温高压下醇类气泡形成机制、气泡动力学以及气泡与液体的相互作用,还可以用于研究醇类辅助碳氢燃料在催化剂的作用下通过化学反应吸热、相变产生的气泡与化学反应产生的气泡进行耦合的过程。

    热电偶测温装置及修正方法
    9.
    发明公开

    公开(公告)号:CN118464222A

    公开(公告)日:2024-08-09

    申请号:CN202410564148.1

    申请日:2024-05-08

    摘要: 热电偶测温装置及修正方法,本发明涉及测量技术领域,解决现有技术中由于管子加工问题引起壁厚不均匀、热电偶焊接焊点大小不均匀或者热电偶的其他误差,导致温度测量出现偏差,单个热电偶测温不能很好地反映该截面上真实的换热情况的问题。所述测温装置包括至少一个的壁面热电偶、实验通道,所述至少一个的壁面热电偶沿实验通道截面均匀分布,用于测量壁面温度。所述修正方法基于方案一中任意一项所述的测温装置实现,所述修正方法为:计算散热损失功率;基于得到的散热损失功率计算单个热电偶处的对流换热系数;将单个热电偶处的对流换热系数对同一截面上四个热电偶进行修正。实时温度监测和控制的应用领域中。