基于图像的分布级概念漂移检测与适应方法及系统

    公开(公告)号:CN118972160B

    公开(公告)日:2024-12-31

    申请号:CN202411393075.0

    申请日:2024-10-08

    Abstract: 本发明公开一种基于图像的分布级概念漂移检测与适应方法及系统,包括对捕获的网络流量提取流级别特征并进行独热编码,使用对比自编码器对特征进行降维得到嵌入特征向量并分别计算训练集中正常类和异常类的质心,并采用中位数绝对偏差方法将测试集样本分为正常类、漂移类和异常类;使用tsne将样本对应的嵌入特征向量降维到二维可视化特征并进行归一化处理,用于将样本数据投影在黑白图上;采用黑白图差异化的方法筛选出待检测像素点集合,基于待检测像素点集合生成人工标记样本,并使用正则化进行增量学习,提高模型的检测效果。本发明以图像对比、增量、灵活的方式持续学习网络流量的分布特点,保护目标网络系统免受恶意攻击。

    基于图像的分布级概念漂移检测与适应方法及系统

    公开(公告)号:CN118972160A

    公开(公告)日:2024-11-15

    申请号:CN202411393075.0

    申请日:2024-10-08

    Abstract: 本发明公开一种基于图像的分布级概念漂移检测与适应方法及系统,包括对捕获的网络流量提取流级别特征并进行独热编码,使用对比自编码器对特征进行降维得到嵌入特征向量并分别计算训练集中正常类和异常类的质心,并采用中位数绝对偏差方法将测试集样本分为正常类、漂移类和异常类;使用tsne将样本对应的嵌入特征向量降维到二维可视化特征并进行归一化处理,用于将样本数据投影在黑白图上;采用黑白图差异化的方法筛选出待检测像素点集合,基于待检测像素点集合生成人工标记样本,并使用正则化进行增量学习,提高模型的检测效果。本发明以图像对比、增量、灵活的方式持续学习网络流量的分布特点,保护目标网络系统免受恶意攻击。

Patent Agency Ranking