-
公开(公告)号:CN110442800A
公开(公告)日:2019-11-12
申请号:CN201910659962.0
申请日:2019-07-22
Applicant: 哈尔滨工程大学
IPC: G06F16/9536
Abstract: 一种融合节点属性和图结构的半监督社区发现方法,属于网络分析技术领域。包括以下步骤:1)计算m个属性的信息熵;2)计算属性相似度;3)利用Jaccard相似度计算结构相似度;4)计算属性和结构总的相似度;5)寻找K个初始社区;6)初始化初始社区矩阵;7)结合半监督方法计算出社区划分矩阵;8)计算平衡值(trade-off)分析参数的合理取值范围9)根据trade-off和模块度获得最优的模块度及社区发现结果。本发明通过不断调节算法中涉及的参数来得到一种合理地划分方式,并最后给出对于社区发现最优结果以及算法参数合理范围;融合属性进行社区发现,给出了属性所占比例的合理范围,社区发现模块度和紧密度得到提高。
-
公开(公告)号:CN110472104A
公开(公告)日:2019-11-19
申请号:CN201910659963.5
申请日:2019-07-22
Applicant: 哈尔滨工程大学
IPC: G06F16/901 , G06F16/903 , G06F16/906 , G06Q50/00
Abstract: 本发明属于社交网络分析技术领域,具体涉及一种动态社交网络节点离开行为预测方法。本发明在全局层面利用有影响力的节点对其他的影响来定义节点在全局上的活跃度,利用k-core分解有效地识别具有影响力的节点,并且可以保证这些点在自身邻域保持较好的聚集程度;在局部层面结合节点邻域的拓扑结构和节点自身属性(主要使用时间戳)定义节点在自身邻域上的活跃度,综合分析节点全局和局部的活跃度进行排序,达到预测节点离开行为的目的。
-
公开(公告)号:CN110442800B
公开(公告)日:2022-05-20
申请号:CN201910659962.0
申请日:2019-07-22
Applicant: 哈尔滨工程大学
IPC: G06F16/9536
Abstract: 一种融合节点属性和图结构的半监督社区发现方法,属于网络分析技术领域。包括以下步骤:1)计算m个属性的信息熵;2)计算属性相似度;3)利用Jaccard相似度计算结构相似度;4)计算属性和结构总的相似度;5)寻找K个初始社区;6)初始化初始社区矩阵;7)结合半监督方法计算出社区划分矩阵;8)计算平衡值(trade‑off)分析参数的合理取值范围9)根据trade‑off和模块度获得最优的模块度及社区发现结果。本发明通过不断调节算法中涉及的参数来得到一种合理地划分方式,并最后给出对于社区发现最优结果以及算法参数合理范围;融合属性进行社区发现,给出了属性所占比例的合理范围,社区发现模块度和紧密度得到提高。
-
公开(公告)号:CN110489804A
公开(公告)日:2019-11-22
申请号:CN201910659827.6
申请日:2019-07-22
Applicant: 哈尔滨工程大学
IPC: G06F17/50
Abstract: 本发明公开了一种单位圆盘图上的最大独立集近似求解方法,包括以下步骤:步骤1:利用动态规划方法设计一种单位圆盘顶点的相邻顶点集诱导子图的最大顶点独立集的最优解求解方法,并给出任意两顶点相邻顶点集并集诱导子图的最大顶点独立集的最优解;步骤2:针对一般的单位圆盘图,首先计算顶点支配独立集;之后对顶点支配独立集中成员进行单独检查,判断结果是否可优化,得到中间解;最后对中间解中成员进行联合检查,判断结果是否可优化,得到最终解。本发明以O(Δ2n3)的计算时间复杂度得到近似比为1.5的近似解,其中Δ为顶点最大度,相比单位圆盘图上最大独立集求解问题的现有近似算法,本发明提高了近似比,具有更高的效率。
-
-
-