基于采样通信的自适应反步滑模多无人艇编队控制方法

    公开(公告)号:CN114047744B

    公开(公告)日:2023-06-13

    申请号:CN202111050090.1

    申请日:2021-09-08

    Abstract: 本发明公开了一种基于采样通信的自适应反步滑模多无人艇编队控制方法,包括:建立无人船控制系统的运动学和动力学模型;基于运动学和动力学模型搭建基于采样通信的无人船编队协同控制器,并进行稳定分析;基于无人船编队协同控制器,设计自适应反步控制底层;基于自适应反步控制底层,设计跟踪控制子系统的运动学控制器;基于自适应反步控制底层,设计编队控制子系统的动力学控制器;根据Lyapunov稳定性定理,分析自适应反步控制底层的稳定性。该方法采用多个无人艇进行协作实现任务的分担,降低对单个机器人的性能要求,也可有效地克服单个无人艇运载能力不足问题,同时大大提高任务完成的可靠性,且具有更高的容错性、鲁棒性、适应性。

    一种考虑输入量化和非线性死区的水下机器人无模型控制方法

    公开(公告)号:CN113835340A

    公开(公告)日:2021-12-24

    申请号:CN202111050201.9

    申请日:2021-09-08

    Abstract: 本发明提出了一种考虑输入量化和非线性死区的水下机器人无模型控制方法,所述方法包括构建水下机器人数学模型及无模型处理,简化考虑死区量化控制表达式,设计控制器和稳定性分析证明;本发明为了加强水下无人航行器的鲁棒性能和忽略高度耦合动力学的影响,结合滑模控制的无模型控制能极大程度上减轻了对于很难获得的模型参数的依赖;考虑到减少执行机构和控制模块的数据传输的频率,磁滞量化器将产生分段量化控制信号,来保证其的有限精度以及有效地避免了抖振问题;自适应参数估计方法用来补偿死区非线性估计的误差,能够减少计算的复杂性和计算的次数,使得控制精度和效果大大提升。

    一种基于FLUENT动网格技术黄貂鱼模型的自主游动模拟方法

    公开(公告)号:CN111062172A

    公开(公告)日:2020-04-24

    申请号:CN201911307845.4

    申请日:2019-12-18

    Abstract: 本发明涉及一种基于FLUENT动网格技术黄貂鱼模型的自主游动模拟方法,属于仿生流体力学技术领域。包括采集黄貂鱼运动试验数据;使用三维扫描仪对鱼体进行扫描,得到黄貂鱼的三维模型;将所有标记点的坐标数据输入MATLAB中,通过数据处理,得到黄貂鱼的运动规律;编写UDF文件;导入模型,建立流域,划分网格;设置FLUENT计算工况文件;根据FLUENT计算结果,对黄貂鱼模型的水动力性能参数和流场进行分析,揭示其MPF波动推进的内在机制。本方法既可得到黄貂鱼启动时的流场变化,也可得到黄貂鱼巡游时一个周期内的流场信息,同时本方法一个工况就能够模拟出黄貂鱼模型从启动到巡游的整个过程,最终得到准确巡游速度,大大减少了计算时间,应用前景广阔。

    一种自主水面航行器的抗饱和无模型预设性能轨迹跟踪控制方法

    公开(公告)号:CN114265308B

    公开(公告)日:2023-07-25

    申请号:CN202111050133.6

    申请日:2021-09-08

    Abstract: 本发明公开了一种自主水面航行器的抗饱和无模型预设性能轨迹跟踪控制方法,属于无人艇抗干扰控制技术领域。所述自主水面航行器的抗饱和无模型预设性能轨迹跟踪控制方法包括以下步骤:步骤一、建立考虑了外部干扰的无人艇动力学模型;步骤二、建立饱和函数模型;步骤三、设计独立于模型信息的抗饱和控制器;步骤四、验证无人艇控制系统的稳定性和鲁棒性。本发明通过设计误差转换方程和饱和函数模型,仅通过调整预设性能参数就能实现饱和跟踪控制,并且结构简单,设计参数少,在工程方面有很好的适用性。

    一种基于FLUENT动网格技术黄貂鱼模型的自主游动模拟方法

    公开(公告)号:CN111062172B

    公开(公告)日:2022-12-16

    申请号:CN201911307845.4

    申请日:2019-12-18

    Abstract: 本发明涉及一种基于FLUENT动网格技术黄貂鱼模型的自主游动模拟方法,属于仿生流体力学技术领域。包括采集黄貂鱼运动试验数据;使用三维扫描仪对鱼体进行扫描,得到黄貂鱼的三维模型;将所有标记点的坐标数据输入MATLAB中,通过数据处理,得到黄貂鱼的运动规律;编写UDF文件;导入模型,建立流域,划分网格;设置FLUENT计算工况文件;根据FLUENT计算结果,对黄貂鱼模型的水动力性能参数和流场进行分析,揭示其MPF波动推进的内在机制。本方法既可得到黄貂鱼启动时的流场变化,也可得到黄貂鱼巡游时一个周期内的流场信息,同时本方法一个工况就能够模拟出黄貂鱼模型从启动到巡游的整个过程,最终得到准确巡游速度,大大减少了计算时间,应用前景广阔。

    一种自主水面航行器的抗饱和无模型预设性能轨迹跟踪控制方法

    公开(公告)号:CN114265308A

    公开(公告)日:2022-04-01

    申请号:CN202111050133.6

    申请日:2021-09-08

    Abstract: 本发明公开了一种自主水面航行器的抗饱和无模型预设性能轨迹跟踪控制方法,属于无人艇抗干扰控制技术领域。所述自主水面航行器的抗饱和无模型预设性能轨迹跟踪控制方法包括以下步骤:步骤一、建立考虑了外部干扰的无人艇动力学模型;步骤二、建立饱和函数模型;步骤三、设计独立于模型信息的抗饱和控制器;步骤四、验证无人艇控制系统的稳定性和鲁棒性。本发明通过设计误差转换方程和饱和函数模型,仅通过调整预设性能参数就能实现饱和跟踪控制,并且结构简单,设计参数少,在工程方面有很好的适用性。

    基于采样通信的自适应反步滑模多无人艇编队控制方法

    公开(公告)号:CN114047744A

    公开(公告)日:2022-02-15

    申请号:CN202111050090.1

    申请日:2021-09-08

    Abstract: 本发明公开了一种基于采样通信的自适应反步滑模多无人艇编队控制方法,包括:建立无人船控制系统的运动学和动力学模型;基于运动学和动力学模型搭建基于采样通信的无人船编队协同控制器,并进行稳定分析;基于无人船编队协同控制器,设计自适应反步控制底层;基于自适应反步控制底层,设计跟踪控制子系统的运动学控制器;基于自适应反步控制底层,设计编队控制子系统的动力学控制器;根据Lyapunov稳定性定理,分析自适应反步控制底层的稳定性。该方法采用多个无人艇进行协作实现任务的分担,降低对单个机器人的性能要求,也可有效地克服单个无人艇运载能力不足问题,同时大大提高任务完成的可靠性,且具有更高的容错性、鲁棒性、适应性。

    一种水面无人艇航控系统

    公开(公告)号:CN114035567B

    公开(公告)日:2024-07-12

    申请号:CN202111050149.7

    申请日:2021-09-08

    Abstract: 本发明公开了一种水面无人艇航控系统,属于无人艇航控技术领域,解决仅涉及单项技术的控制系统的无人艇在执行任务时存在局限性问题。本发明的一种水面无人艇航控系统包括:路径跟踪模块、虚拟引导模块、动力定位模块和底层控制器;路径跟踪模块用于根据接收到的任务路径,生成航行规划路径信息发送给底层控制器;虚拟引导模块根据任务移动引导点,生成航行规划移动引导信息发送给底层控制器;动力定位模块根据任务固定定位点,生成航行规划动力定位信息发送给底层控制器;底层控制器用于根据路径跟踪模块、虚拟引导模块和动力定位模块,结合当前位姿信息获取期望舵角和期望油门,对无人艇进行控制。本发明适用于欠驱动无人艇的自主控制系统。

    一种考虑输入量化和非线性死区的水下机器人无模型控制方法

    公开(公告)号:CN113835340B

    公开(公告)日:2023-07-25

    申请号:CN202111050201.9

    申请日:2021-09-08

    Abstract: 本发明提出了一种考虑输入量化和非线性死区的水下机器人无模型控制方法,所述方法包括构建水下机器人数学模型及无模型处理,简化考虑死区量化控制表达式,设计控制器和稳定性分析证明;本发明为了加强水下无人航行器的鲁棒性能和忽略高度耦合动力学的影响,结合滑模控制的无模型控制能极大程度上减轻了对于很难获得的模型参数的依赖;考虑到减少执行机构和控制模块的数据传输的频率,磁滞量化器将产生分段量化控制信号,来保证其的有限精度以及有效地避免了抖振问题;自适应参数估计方法用来补偿死区非线性估计的误差,能够减少计算的复杂性和计算的次数,使得控制精度和效果大大提升。

    一种水面无人艇航控系统
    10.
    发明公开

    公开(公告)号:CN114035567A

    公开(公告)日:2022-02-11

    申请号:CN202111050149.7

    申请日:2021-09-08

    Abstract: 本发明公开了一种水面无人艇航控系统,属于无人艇航控技术领域,解决仅涉及单项技术的控制系统的无人艇在执行任务时存在局限性问题。本发明的一种水面无人艇航控系统包括:路径跟踪模块、虚拟引导模块、动力定位模块和底层控制器;路径跟踪模块用于根据接收到的任务路径,生成航行规划路径信息发送给底层控制器;虚拟引导模块根据任务移动引导点,生成航行规划移动引导信息发送给底层控制器;动力定位模块根据任务固定定位点,生成航行规划动力定位信息发送给底层控制器;底层控制器用于根据路径跟踪模块、虚拟引导模块和动力定位模块,结合当前位姿信息获取期望舵角和期望油门,对无人艇进行控制。本发明适用于欠驱动无人艇的自主控制系统。

Patent Agency Ranking