一种基于相似路径和量子浣熊机制的WSN节点定位方法

    公开(公告)号:CN119052744A

    公开(公告)日:2024-11-29

    申请号:CN202411264084.X

    申请日:2024-09-10

    Abstract: 本发明公开了一种基于相似路径和量子浣熊机制的WSN节点定位方法,首先建立基于相似路径的距离估计模型;建立基于跳距修正的节点定位模型,开始定位;初始化量子浣熊群并设定相关参数;定义并计算每只量子浣熊量子位置的适应度值,确定量子浣熊群最优量子位置;量子浣熊执行狩猎和攻击模式,在狩猎和攻击模式下使用量子旋转角来演化量子浣熊的量子位置;使用选择机制选择下一代量子浣熊的量子位置和量子浣熊群的最优量子位置;量子浣熊机制演进终止判断,实现对目标节点的定位;输出所有目标节点的定位结果。本发明突破了传统定位方法在网络拓扑结构呈各向异性时存在的应用局限,提高了在各向异性网络中的适用性,可应用于实际静态无线传感器网络。

    一种演化可调指数分数低阶协方差的时延估计方法及系统

    公开(公告)号:CN118574152B

    公开(公告)日:2024-11-22

    申请号:CN202410631402.5

    申请日:2024-05-21

    Abstract: 本发明公开了一种演化可调指数分数低阶协方差的时延估计方法及系统,涉及无线通信技术领域。本发明的技术要点包括:获取信号发射端和接收端采样数据;建立可调指数分数低阶协方差时延估计模型;初始化量子云雀群位置和量子速度并设定参数;对初代量子云雀群的位置进行适应度计算,得到量子云雀群的局部最优位置以及全局最优位置;进行量子速度更新,并通过更新后量子速度完成位置更新;更新量子云雀群的局部最优位置,同时找到全局最优位置;判断是否达到最大迭代次数,若达到则输出可调节指数分数低阶协方差的最优参数,根据接收信号进行时延估计。本发明通过量子演化与云雀群寻优,设计时延估计值均方根误差为适应度函数,提高了时延估计效果。

    一种演化可调指数分数低阶协方差的时延估计方法及系统

    公开(公告)号:CN118574152A

    公开(公告)日:2024-08-30

    申请号:CN202410631402.5

    申请日:2024-05-21

    Abstract: 本发明公开了一种演化可调指数分数低阶协方差的时延估计方法及系统,涉及无线通信技术领域。本发明的技术要点包括:获取信号发射端和接收端采样数据;建立可调指数分数低阶协方差时延估计模型;初始化量子云雀群位置和量子速度并设定参数;对初代量子云雀群的位置进行适应度计算,得到量子云雀群的局部最优位置以及全局最优位置;进行量子速度更新,并通过更新后量子速度完成位置更新;更新量子云雀群的局部最优位置,同时找到全局最优位置;判断是否达到最大迭代次数,若达到则输出可调节指数分数低阶协方差的最优参数,根据接收信号进行时延估计。本发明通过量子演化与云雀群寻优,设计时延估计值均方根误差为适应度函数,提高了时延估计效果。

Patent Agency Ranking