-
公开(公告)号:CN112034858B
公开(公告)日:2022-04-29
申请号:CN202010958562.2
申请日:2020-09-14
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明属于舰船自动控制技术领域,具体涉及一种融合弱观测高阶输出数据的无模型自适应艏向控制方法。本发明在输入准则函数中引入弱观测条件下舰船高阶输出数据,将舰船艏向一阶差分和二阶差分信息作为控制器的负反馈输入,重新设计艏向控制律,加快了MFAC控制器在线辨识、学习和控制过程,解决了无模型自适应控制算法直接应用于舰船艏向这类非自衡系统出现震荡发散现象,提高系统的动态响应性能和控制精度。本发明对传感器的要求不高,弱观测类型的姿态传感器即可满足需求,易于工程实施且控制成本低。
-
公开(公告)号:CN109240289A
公开(公告)日:2019-01-18
申请号:CN201811015888.0
申请日:2018-09-01
Applicant: 哈尔滨工程大学
Abstract: 波浪滑翔器艏摇信息自适应滤波方法涉及波浪滑翔器的运动控制领域,具体涉及波浪滑翔器艏摇信息自适应滤波方法。波浪滑翔器艏摇信息自适应滤波方法,包括浮体艏摇响应自适应滤波方法和潜体艏摇响应自适应滤波方法,二者并行运行。本发明提供的一种波浪滑翔器艏摇信息自适应滤波方法,根据波浪滑翔器实际航行的动态数据修正数据模型,实现自适应滤波,能够同时估计波浪滑翔器的浮体和潜体的艏向角与转艏角速度,在不确定性环境干扰和模型参数摄动的影响下仍然能够达到良好的滤波效果。本发明结构简单,易于实现,具有较好的自适应性,应用于波浪滑翔器运动控制系统中能够有效改善控制效果。
-
公开(公告)号:CN108829113B
公开(公告)日:2021-05-28
申请号:CN201811017293.9
申请日:2018-09-01
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及多机器人编队控制领域,具体涉及一种多机器人编队自适应零空间行为融合方法。根据机器人编队运动意图,将机器人运动过程分解,确定行为顺序步骤,然后建立运动模型步骤,结合3种运动行为的执行顺序进行求解,得到3种运动模型,之后根据机器人在运动过程中反馈得到的运动信息,解算得到增益系数,融合运动行为步骤,得到最终的速度和方向。相对于传统零空间行为融合方法,本发明使得求解出来的速度不受工况环境改变而改变,具有很好的自适应性,同时兼顾效率与性能,可以对速度进行有效控制,在运动规划上具有显著进步。
-
公开(公告)号:CN110263400A
公开(公告)日:2019-09-20
申请号:CN201910503700.5
申请日:2019-06-12
Applicant: 哈尔滨工程大学
IPC: G06F17/50
Abstract: 本发明提供一种无人艇非线性动力学模型的积分辨识方法,通过获取所需辨识双体无人艇Z型试验数据;对数据中大幅度偏离真实值的野值进行剔除处理;建立无人艇一阶非线性K-T方程的运动模型;选取舵角和艏向角速度与时间的关系列表;对K-T方程进行积分化处理,对需辨识的模型方程两侧基于时间区域进行积分,利用积分方式舍掉角加速度,引入艏向角数据;对积分区间离散并求积,对积分区间以控制节拍为基准进行离散,并采取牛顿-科特斯求积公式插值求积;利用最小二乘方法使辨识方程两侧差值的平方最小,即可求得K,T,α的值。本发明的方法可以对无人艇操纵模型的一阶非线性项进行辨识,在无人艇动力学模型辨识上具有显著进步,可以同时兼顾效率与性能。
-
公开(公告)号:CN109489672A
公开(公告)日:2019-03-19
申请号:CN201910041363.2
申请日:2019-01-16
Applicant: 哈尔滨工程大学
IPC: G01C21/20
Abstract: 本发明提出了考虑海流与无人艇动力学影响的节能A星路径规划方法,步骤包括:(1)获取全局海图信息并网格化;(2)获取无人艇的起点和终点位置信息;(3)将当前位置设为起点位置,创建OPEN和CLOSD表;(4)计算在海流影响下的无人艇航速堆;(5)将当前位置存入OPEN表;(6)依次判断当前位置无人艇是否可以向周围八个方向行驶等。本发明在传统A星路径规划算法的基础上,结合海流影响下的无人艇动力学模型,设计考虑海流影响的能耗启发函数E_heurstic,并通过调整该函数的权值,实现对算法节能效率的动态调节,为无人艇在海面上长时间工作提供技术支持。
-
公开(公告)号:CN108829113A
公开(公告)日:2018-11-16
申请号:CN201811017293.9
申请日:2018-09-01
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及多机器人编队控制领域,具体涉及一种多机器人编队自适应零空间行为融合方法。根据机器人编队运动意图,将机器人运动过程分解,确定行为顺序步骤,然后建立运动模型步骤,结合3种运动行为的执行顺序进行求解,得到3种运动模型,之后根据机器人在运动过程中反馈得到的运动信息,解算得到增益系数,融合运动行为步骤,得到最终的速度和方向。相对于传统零空间行为融合方法,本发明使得求解出来的速度不受工况环境改变而改变,具有很好的自适应性,同时兼顾效率与性能,可以对速度进行有效控制,在运动规划上具有显著进步。
-
公开(公告)号:CN108445894A
公开(公告)日:2018-08-24
申请号:CN201810623244.3
申请日:2018-06-15
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明属于无人艇路径规划领域,公开了一种考虑无人艇运动性能的二次路径规划方法,包含如下步骤:步骤(1):通过无人艇定常回转试验或操纵性仿真试验确定无人水面艇的回转曲率;步骤(2):进行无人艇一次路径规划,获得一次最优路径点集p;步骤(3):根据一次最优路径点集p和水面无人艇运动的回转性能用二次路径规划方法得到无人艇运动范围能力内的最优路径p2。本发明通过分析无人艇回转特性,进行二次路径规划,在已有最优路径前提下,解算出一条符合无人艇实际运动特性的最优路径,同时兼顾效率与性能,在减少迂回行路并优化航行时间方面具有显著进步。
-
公开(公告)号:CN109375637B
公开(公告)日:2022-03-18
申请号:CN201811032862.7
申请日:2018-09-05
Applicant: 哈尔滨工程大学
IPC: G05D1/08
Abstract: 本发明属于舰船运动自动控制领域,具体涉及一种舰船用融合神经网络PD的紧格式无模型自适应航向控制算法;包括在紧格式无模型自适应控制算法的基础上引入比例项和微分项构成融合PD型CFDL_MFAC算法;将神经网络控制与PD_CFDL_MFAC算法相结合提出融合神经网络PD的紧格式无模型自适应航向控制算法;计算航向偏差e(k),其中e(k)=y*(k)‑y(k)等。本发明通过比例项和微分项的引入,提高了算法的自适应性以及抵抗外界不确定干扰的能力。
-
公开(公告)号:CN113110519B
公开(公告)日:2021-11-30
申请号:CN202110578219.X
申请日:2021-05-26
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 一种舰船用非增量型无模型自适应艏向控制方法,涉及舰船的自动运动控制技术领域。本发明是为了解决将MFAC直接应用于非自衡系统时,会降低系统稳定性的问题。本发明通过在原MFAC准则函数的基础上引入一个输入输出耦合自适应补偿项,进而重新设计了控制律,抵消被控系统的积分影响,使得改进算法得以应用于舰船艏向控制等非自衡系统。同时在控制律中引入的关于的系数项,自适应的调整其在控制律中的权重比,从而增大系统抵抗外界大扰动干扰与模型突变的能力。并且,自适应补偿项的权重系数kr的引入还增大了算法可调灵活度。
-
公开(公告)号:CN113093532A
公开(公告)日:2021-07-09
申请号:CN202110248550.5
申请日:2021-03-05
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 一种非自衡系统的全格式无模型自适应控制方法,涉及非自衡系统的控制技术领域。本发明是为了解决传统无模型自适应控制方法不能直接应用于非自衡系统的问题。本发明建立非自衡系统的动态IO数据模型,设置动态IO数据模型参数的更新准则函数和控制输入解算的准则函数,对k时刻动态IO数据模型参数求极小值,更新动态IO数据模型,之后代入控制输入解算的准则函数,对非自衡系统的控制输入信息求极小值,获得k时刻非自衡系统的控制输入信息,最后将控制输入信息输入至非自衡系统,当非自衡系统控制过程结束时完成非自衡系统的无模型自适应控制,否则使k=k+1,然后返回重新更新动态IO数据模型。
-
-
-
-
-
-
-
-
-