基于联合CST算法的仿生蟹翼型优化设计方法

    公开(公告)号:CN112001033B

    公开(公告)日:2022-08-26

    申请号:CN202010914963.8

    申请日:2020-09-03

    Abstract: 基于联合CST算法的仿生蟹翼型优化设计方法,它属于仿生蟹翼型优化技术领域。本发明解决了由于传统CST算法自身所存在的一些缺点,导致利用传统CST算法优化后的仿生蟹翼型的水动力性能有待提升的问题。本发明首先基于NACA0012和改进的直接CST算法进行基础翼型描述,再采用改进的扰动CST算法对基础翼型进行修正获得优化后的翼型,通过实验对比证明,同样条件下,采用改进的直接CST算法和改进的扰动CST算法可以有效提高仿生蟹翼型的水动力性能。本发明可以应用于仿生蟹翼型优化。

    一种自主水下机器人神经网络S面控制方法

    公开(公告)号:CN109901403B

    公开(公告)日:2022-07-29

    申请号:CN201910277202.3

    申请日:2019-04-08

    Abstract: 一种自主水下机器人神经网络S面控制方法,涉及一种自主水下机器人的控制方法。为了解决现有的AUV的S面控制方法存在难以获得最优的控制参数或难以适应复杂变化的海洋环境从而影响运动控制效果的问题。本发明针对AUV控制模型,以S面控制方法对AUV进行闭环控制,在每个控制节拍内由S面控制环节输出控制量,控制器内部S面控制环节的控制参数k1与k2由基于神经网络的预测模型实现多步预测环节、反馈校正环节与滚动优化环节确定。本发明适用于自主水下机器人控制。

    基于固定时间观测器的水面无人艇轨迹快速跟踪控制方法

    公开(公告)号:CN112965371B

    公开(公告)日:2021-09-28

    申请号:CN202110133191.9

    申请日:2021-01-29

    Abstract: 基于固定时间观测器的水面无人艇轨迹快速跟踪控制方法,本发明涉及水面无人艇轨迹快速跟踪控制方法。本发明的目的是为了解决将目前的控制方法应用到水面无人艇时存在的控制精度有限,且调整速度慢的问题。过程为:步骤一、建立水面无人艇系统模型;步骤二、基于步骤一中建立的水面无人艇系统模型,建立轨迹跟踪误差模型;步骤三、建立固定时间收敛系统;步骤四、基于步骤二、步骤三设计固定时间干扰观测器;步骤五、基于步骤四的固定时间干扰观测器,设计径向基函数神经网络;步骤六、基于步骤二、步骤三、步骤四、步骤五,设计有限时间反步跟踪控制器。本发明用于水面无人艇轨迹跟踪控制领域。

    基于扰动观测器的预设性能海底飞行节点轨迹跟踪控制方法

    公开(公告)号:CN109283941B

    公开(公告)日:2021-08-13

    申请号:CN201811359690.4

    申请日:2018-11-15

    Abstract: 基于扰动观测器的预设性能海底飞行节点轨迹跟踪控制方法,本发明涉及预设性能海底飞行节点轨迹跟踪控制方法。本发明为了解决现有方法没有考虑建模不确定性以及海洋环境扰动与推进器故障对OBFN的影响的问题。本发明包括:一:建立Fossen大纲六自由度非线性动力学模型;二:对步骤一建立的非线性动力学模型进行OBFN的动力学模型变换,得到OBFN的动力学模型,根据OBFN的动力学模型确定OBFN的跟踪误差方程;三:建立性能函数;四:将步骤三的跟踪误差进行误差变换,得到变换后的误差;五:根据步骤四得到的变换后的误差,设计OBFN系统总不确定性观测器与预设性能轨迹跟踪控制器。本发明用于轨迹跟踪控制领域。

    一种基于扩展状态观测器的底栖式AUV弱抖振积分滑模点镇定控制方法

    公开(公告)号:CN113238567A

    公开(公告)日:2021-08-10

    申请号:CN202110482857.1

    申请日:2021-04-30

    Abstract: 一种基于扩展状态观测器的底栖式AUV弱抖振积分滑模点镇定控制方法,涉及水下航行器控制领域,针对现有技术中的控制方法存在控制精度有限,调整速度慢的问题,包括:步骤一:建立可底栖式AUV运动方程,并根据可底栖式AUV运动方程构建可底栖式AUV误差模型;步骤二:根据可底栖式AUV误差模型构建可底栖式AUV点镇定跟踪误差模型;步骤三:设计自适应超螺旋扩展状态观测器;步骤四:构建二阶无抖振非奇异积分终端滑模面;步骤五:根据可底栖式AUV点镇定跟踪误差模型、自适应超螺旋扩展状态观测器和二阶无抖振非奇异积分终端滑模面设计控制器。本申请能在有限时间内收敛到稳定状态,且位姿误差收敛到零后能保持较好的稳定性,收敛速度快。

    基于扰动逼近的底栖式AUV固定时间快速轨迹跟踪控制方法

    公开(公告)号:CN112904872A

    公开(公告)日:2021-06-04

    申请号:CN202110069579.7

    申请日:2021-01-19

    Abstract: 基于扰动逼近的底栖式AUV固定时间快速轨迹跟踪控制方法,涉及水下航行器控制领域,针对现有技术中难以实现快速高精度轨迹跟踪控制的问题,包括步骤一:建立可底栖式AUV运动方程,并根据可底栖式AUV运动方程构建轨迹跟踪误差模型;步骤二:构建快速固定时间收敛系统,并根据快速固定时间收敛系统及轨迹跟踪误差模型设计观测器,并根据观测器估计扰动集总项;步骤三:基于快速固定时间收敛系统设计固定时间滑模面;步骤四:利用快速固定时间收敛系统、固定时间滑模面及扰动集总项设计控制器。采用本申请可以实现快速高精度轨迹跟踪控制。

    考虑螺旋桨故障的海底地震检波飞行节点有限时间构型包含控制方法

    公开(公告)号:CN109240317B

    公开(公告)日:2021-06-04

    申请号:CN201811396169.8

    申请日:2018-11-21

    Abstract: 考虑螺旋桨故障的海底地震检波飞行节点有限时间构型包含控制方法,涉及海底地震检波飞行节点构型包含控制方法。为了解决现有的控制方法并不能完全适用于海底地震检波飞行节点的控制,而且现有的控制方法并不能在推进器发生故障时进行有效控制。本发明首先建立多海底地震检波飞行节点系统的动力学和运动学方程,基于飞行节点的动力学和运动学方程以及推进器损坏对应的飞行节点上的推力或力矩,选取误差函数与有限时间滑模变量,并选择非奇异快速终端滑模面;然后设计控制器,从而实现海底地震检波飞行节点有限时间构型包含控制。本发明适用于海底地震检波飞行节点有限时间构型包含控制。

    一种基于Actor-Critic算法的水下机器人运动控制方法

    公开(公告)号:CN112462792A

    公开(公告)日:2021-03-09

    申请号:CN202011432207.8

    申请日:2020-12-09

    Abstract: 一种基于Actor‑Critic算法的水下机器人运动控制方法,本发明涉及水下机器人运动控制方法。本发明的目的是为了解决现有水下机器人难以在运动过程中实时调节参数,且受到干扰时,控制器对水下机器人速度和姿态的控制精度低问题。过程为:一、初始化参数;二、确定速度控制系统和艏向控制系统的控制律;三、设定神经网络;四、确定当前网络的输入和输出;五、确定目标网络的输入和输出;六、更新Actor当前网络权值参数;七、更新Critic当前网络权值参数;八、重复执行四至七n次,第n次将更新后的当前网络权值参数复制到目标网络;九、重复执行八,得到控制律参数值。本发明用于水下机器人运动控制领域。

    基于联合CST算法的仿生蟹翼型优化设计方法

    公开(公告)号:CN112001033A

    公开(公告)日:2020-11-27

    申请号:CN202010914963.8

    申请日:2020-09-03

    Abstract: 基于联合CST算法的仿生蟹翼型优化设计方法,它属于仿生蟹翼型优化技术领域。本发明解决了由于传统CST算法自身所存在的一些缺点,导致利用传统CST算法优化后的仿生蟹翼型的水动力性能有待提升的问题。本发明首先基于NACA0012和改进的直接CST算法进行基础翼型描述,再采用改进的扰动CST算法对基础翼型进行修正获得优化后的翼型,通过实验对比证明,同样条件下,采用改进的直接CST算法和改进的扰动CST算法可以有效提高仿生蟹翼型的水动力性能。本发明可以应用于仿生蟹翼型优化。

    一种基于速度观测器的可底栖式水下机器人预设性能轨迹跟踪控制方法

    公开(公告)号:CN111736617A

    公开(公告)日:2020-10-02

    申请号:CN202010526631.2

    申请日:2020-06-09

    Abstract: 一种基于速度观测器的可底栖式水下机器人预设性能轨迹跟踪控制方法,属于水下机器人控制技术领域。为了解决现有的AUV控制方法没有比较全面的考虑影响控制精度的因素导致控制精度比较低的问题,以及现有的预设性能控制方法很难通过搭载的传感器设备测量所需的状态信息导致控制效果不理想的问题,本发明设计控制器与状态观测器使可底栖式水下机器人在存在建模不确定性、海流扰动与推进器故障的情况下,其位置与姿态量仍然能够跟踪期望值,并使跟踪误差具有预先给定的动态性能及稳态响应情况;本发明还引入一种可预设收敛时间的性能函数,利用该性能函数可以在预期时间内实现预定的轨迹跟踪性能。主要用于可底栖式水下机器人的轨迹跟踪控制。

Patent Agency Ranking