一种用于理解深度学习模型目标分类决策机制的决策树生成方法

    公开(公告)号:CN111553389B

    公开(公告)日:2023-06-13

    申请号:CN202010271181.7

    申请日:2020-04-08

    Abstract: 一种用于理解深度学习模型决策机制的决策树生成方法,它属于深度学习模型的决策机制理解技术领域。本发明解决了在现有基于决策树的深度学习模型决策机制理解方法中需要对深度学习模型进行特殊处理,产生的理解效果有限,且现有方法复杂,对模型决策机制的理解造成影响的问题。本发明利用训练好的深度学习模型,通过使用局部解释的方法来得到输入变量的贡献值,从而最终构建出贡献分布矩阵。将贡献分布矩阵作为输入,利用平均贡献值差异作为划分标准,递归地分区生成模型的决策树,再对生成的决策树进行剪枝、验证最终得到最优解释树。本发明可以应用于深度学习模型的决策机制理解。

Patent Agency Ranking