基于量子蜘蛛群演化机制的平面天线阵列稀疏方法

    公开(公告)号:CN107302140A

    公开(公告)日:2017-10-27

    申请号:CN201710333471.8

    申请日:2017-05-12

    Abstract: 本发明提供的是一种基于量子蜘蛛群演化机制的平面天线阵列稀疏方法。1、建立平面天线阵列稀疏模型;2、设置系统参数;3、用适应度函数评价种群中每只蜘蛛编码位置的优劣,适应度函数值最优的位置记为整个种群的全局最优位置;4、划分种群中蜘蛛的性别;5、计算每只蜘蛛的重量;6、更新雌性蜘蛛量子位置,基于更新后的量子矢量旋转角,采用模拟量子矢量旋转门操作更新雌性蜘蛛量子位置;7、更新雄性蜘蛛量子位置,基于更新后的量子矢量旋转角,采用模拟量子矢量旋转门操作更新雄性蜘蛛量子位置;8更新各自历史最优位置;9:判断是否达到最大迭代次数。本发明解决了多约束平面天线阵列稀疏难题,满足了对平面稀疏阵列的各种要求。

    基于量子蜘蛛群演化机制的平面天线阵列稀疏方法

    公开(公告)号:CN107302140B

    公开(公告)日:2020-01-17

    申请号:CN201710333471.8

    申请日:2017-05-12

    Abstract: 本发明提供的是一种基于量子蜘蛛群演化机制的平面天线阵列稀疏方法。1、建立平面天线阵列稀疏模型;2、设置系统参数;3、用适应度函数评价种群中每只蜘蛛编码位置的优劣,适应度函数值最优的位置记为整个种群的全局最优位置;4、划分种群中蜘蛛的性别;5、计算每只蜘蛛的重量;6、更新雌性蜘蛛量子位置,基于更新后的量子矢量旋转角,采用模拟量子矢量旋转门操作更新雌性蜘蛛量子位置;7、更新雄性蜘蛛量子位置,基于更新后的量子矢量旋转角,采用模拟量子矢量旋转门操作更新雄性蜘蛛量子位置;8更新各自历史最优位置;9:判断是否达到最大迭代次数。本发明解决了多约束平面天线阵列稀疏难题,满足了对平面稀疏阵列的各种要求。

Patent Agency Ranking