一种基于可拓理论和深度学习的医学图像分类方法

    公开(公告)号:CN113313203A

    公开(公告)日:2021-08-27

    申请号:CN202110690614.7

    申请日:2021-06-22

    IPC分类号: G06K9/62 G06N20/00

    摘要: 本发明属于图像识别技术领域,具体涉及一种基于可拓理论和深度学习的医学图像分类方法。本发明提供了融合医学领域知识、深度学习和精细化策略的分类方法,该方法结合了医学领域特征和深度学习特征,对医学图像进行快速、准确的分类。本发明利用可拓理论中可拓关联函数来检测蓝白结构的存在性,将医学图像初步分类为良性病图像和疑似恶性病图像,采用了基于YOLOv3的改进模型YoDyCK模型,可快速准确地提取疑似恶性病图像的深度学习特征,从而提高医学图像的最终分类准确度和效率。

    一种基于可拓理论和深度学习的医学图像分类方法

    公开(公告)号:CN113313203B

    公开(公告)日:2022-11-01

    申请号:CN202110690614.7

    申请日:2021-06-22

    摘要: 本发明属于图像识别技术领域,具体涉及一种基于可拓理论和深度学习的医学图像分类方法。本发明提供了融合医学领域知识、深度学习和精细化策略的分类方法,该方法结合了医学领域特征和深度学习特征,对医学图像进行快速、准确的分类。本发明利用可拓理论中可拓关联函数来检测蓝白结构的存在性,将医学图像初步分类为良性病图像和疑似恶性病图像,采用了基于YOLOv3的改进模型YoDyCK模型,可快速准确地提取疑似恶性病图像的深度学习特征,从而提高医学图像的最终分类准确度和效率。