一种基于复合损失的医学视觉问答方法

    公开(公告)号:CN113779298B

    公开(公告)日:2023-10-31

    申请号:CN202111085818.4

    申请日:2021-09-16

    摘要: 本发明属于医学影像和人工智能交叉技术领域,具体涉及一种基于复合损失的医学视觉问答方法。本发明针对大多医学视觉问答专注于视觉内容而忽略了文本重要性的问题,在对图像和问题提取特征后采用多视角注意力机制将问题与图像和单词相关联,并采用分类损失和图像问题互补损失共同训练整个模型,补偿了现有的大多数医学视觉问答方法忽略了挖掘文本信息重要性的问题,实现了多角度对问题的关注,从而提高医学视觉问答方法的有效性。本发明可以有效解决医学视觉问答任务。

    一种基于可拓理论和深度学习的医学图像分类方法

    公开(公告)号:CN113313203B

    公开(公告)日:2022-11-01

    申请号:CN202110690614.7

    申请日:2021-06-22

    摘要: 本发明属于图像识别技术领域,具体涉及一种基于可拓理论和深度学习的医学图像分类方法。本发明提供了融合医学领域知识、深度学习和精细化策略的分类方法,该方法结合了医学领域特征和深度学习特征,对医学图像进行快速、准确的分类。本发明利用可拓理论中可拓关联函数来检测蓝白结构的存在性,将医学图像初步分类为良性病图像和疑似恶性病图像,采用了基于YOLOv3的改进模型YoDyCK模型,可快速准确地提取疑似恶性病图像的深度学习特征,从而提高医学图像的最终分类准确度和效率。

    一种稀布同心圆环阵的降维优化算法

    公开(公告)号:CN107896129A

    公开(公告)日:2018-04-10

    申请号:CN201711134028.4

    申请日:2017-11-16

    IPC分类号: H04B17/10 H04B17/15 H04B17/29

    摘要: 本发明提供一种稀布同心圆环阵的降维优化算法,本发明提供了一种稀布同心圆环阵的降维优化算法,主要针对传统算法不能直接优化稀布同心圆环阵或计算量大等问题,提出了新的优化方法;包括:(1)初始化阵列参数,建立稀布同心圆环阵和同心圆环阵满阵的参考模型;(2)计算参考圆孔径连续的加权面密度,对优化问题进行降维处理,得到稀布同心圆环阵每环上的阵元数目与环半径的关系;(3)利用余量编码技术,对环半径进行优化;(4)计算代价函数;(5)判断是否达到最大循环次数,若是,则算法结束,若否,重复步骤二至步骤四。本发明的算法能够有效减少优化布阵问题的计算量,降低峰值旁瓣电平,具有很好的鲁棒性,对实际天线系统的实现有重要意义。

    一种基于复合损失的医学视觉问答方法

    公开(公告)号:CN113779298A

    公开(公告)日:2021-12-10

    申请号:CN202111085818.4

    申请日:2021-09-16

    摘要: 本发明属于医学影像和人工智能交叉技术领域,具体涉及一种基于复合损失的医学视觉问答方法。本发明针对大多医学视觉问答专注于视觉内容而忽略了文本重要性的问题,在对图像和问题提取特征后采用多视角注意力机制将问题与图像和单词相关联,并采用分类损失和图像问题互补损失共同训练整个模型,补偿了现有的大多数医学视觉问答方法忽略了挖掘文本信息重要性的问题,实现了多角度对问题的关注,从而提高医学视觉问答方法的有效性。本发明可以有效解决医学视觉问答任务。

    一种稀布同心圆环阵的降维优化算法

    公开(公告)号:CN107896129B

    公开(公告)日:2020-07-24

    申请号:CN201711134028.4

    申请日:2017-11-16

    IPC分类号: H04B17/10 H04B17/15 H04B17/29

    摘要: 本发明提供一种稀布同心圆环阵的降维优化算法,本发明提供了一种稀布同心圆环阵的降维优化算法,主要针对传统算法不能直接优化稀布同心圆环阵或计算量大等问题,提出了新的优化方法;包括:(1)初始化阵列参数,建立稀布同心圆环阵和同心圆环阵满阵的参考模型;(2)计算参考圆孔径连续的加权面密度,对优化问题进行降维处理,得到稀布同心圆环阵每环上的阵元数目与环半径的关系;(3)利用余量编码技术,对环半径进行优化;(4)计算代价函数;(5)判断是否达到最大循环次数,若是,则算法结束,若否,重复步骤二至步骤四。本发明的算法能够有效减少优化布阵问题的计算量,降低峰值旁瓣电平,具有很好的鲁棒性,对实际天线系统的实现有重要意义。

    一种基于可拓理论和深度学习的医学图像分类方法

    公开(公告)号:CN113313203A

    公开(公告)日:2021-08-27

    申请号:CN202110690614.7

    申请日:2021-06-22

    IPC分类号: G06K9/62 G06N20/00

    摘要: 本发明属于图像识别技术领域,具体涉及一种基于可拓理论和深度学习的医学图像分类方法。本发明提供了融合医学领域知识、深度学习和精细化策略的分类方法,该方法结合了医学领域特征和深度学习特征,对医学图像进行快速、准确的分类。本发明利用可拓理论中可拓关联函数来检测蓝白结构的存在性,将医学图像初步分类为良性病图像和疑似恶性病图像,采用了基于YOLOv3的改进模型YoDyCK模型,可快速准确地提取疑似恶性病图像的深度学习特征,从而提高医学图像的最终分类准确度和效率。