一种基于深度学习的文本情感分析方法

    公开(公告)号:CN110889282B

    公开(公告)日:2023-03-21

    申请号:CN201911189487.1

    申请日:2019-11-28

    Abstract: 本发明提供了一种基于深度学习的文本情感分析方法。(1)输入文本数据,去除停用词,提取关键字,形成关键字集合。(2)通过构建关键字共现图,形成稠密的子图;获取子图和文档中句子的向量表示,进而将句子分配给子图;设计子图与子图之间的边缘连接和边缘权重,形成文档的拓扑交互图表达;(3)将拓扑交互图作为Emo‑GCN模型的输入,进行抽取节点特征变换,然后融合局部结构信息,获得节点聚合矩阵。将聚合的信息做非线性变换。Emo‑GCN模型采用层级结构,逐层抽取特征。本发明采用新颖的拓扑交互图表达文本信息进而使用图卷积神经网络进行文本情感分析,并且仍然具备强大的适应性。该方法应用于产品推荐、市场预测、决策调整。

    一种基于深度学习的文本情感分析方法

    公开(公告)号:CN110889282A

    公开(公告)日:2020-03-17

    申请号:CN201911189487.1

    申请日:2019-11-28

    Abstract: 本发明提供了一种基于深度学习的文本情感分析方法。(1)输入文本数据,去除停用词,提取关键字,形成关键字集合。(2)通过构建关键字共现图,形成稠密的子图;获取子图和文档中句子的向量表示,进而将句子分配给子图;设计子图与子图之间的边缘连接和边缘权重,形成文档的拓扑交互图表达;(3)将拓扑交互图作为Emo-GCN模型的输入,进行抽取节点特征变换,然后融合局部结构信息,获得节点聚合矩阵。将聚合的信息做非线性变换。Emo-GCN模型采用层级结构,逐层抽取特征。本发明采用新颖的拓扑交互图表达文本信息进而使用图卷积神经网络进行文本情感分析,并且仍然具备强大的适应性。该方法应用于产品推荐、市场预测、决策调整,具有极高的商业价值。

Patent Agency Ranking