-
公开(公告)号:CN111504635A
公开(公告)日:2020-08-07
申请号:CN202010316612.7
申请日:2020-04-21
申请人: 哈尔滨理工大学
IPC分类号: G01M13/021 , G01M13/028 , G06K9/62 , G06K9/00 , G06N3/04 , G06N3/08
摘要: 基于差分进化神经网络的行星齿轮故障诊断方法,属于旋转机械故障诊断方法领域。本发明包括如下步骤:S1、确定故障模式类型,通过传感器获取行星齿轮的振动信号;S2、采用经验小波变换方法分解所述振动信号;S3、利用时频域指标选择分解后的信号形成特征矩阵;S4、通过t-SNE特征降维方法对所述特征矩阵降维;S5、在概率神经网络的基础上,提出了基于差分进化优化的概率神经网络故障诊断模型,利用差分进化优化算法对概率神经网络中的光滑因子δ进行优化,选取最优的δ值,以提高故障诊断精度。本发明相比传统故障诊断方法具有更高的故障诊断精度。
-
公开(公告)号:CN111695521B
公开(公告)日:2022-06-10
申请号:CN202010539588.3
申请日:2020-06-15
申请人: 哈尔滨理工大学
摘要: 基于Attention‑LSTM的滚动轴承性能衰退预测方法,属于旋转机械性能监测领域。首先,针对设备性能衰退评估过程中缺乏性能衰退指标以及监测信号难以直观表征轴承性能衰退特性的问题,通过时域与频域分析生成多个备选特征指标并采用相关性、单调性和鲁棒性三个指标其进行评价筛选,将特征值曲线通过固定窗均值化处理得到HI曲线和残差曲线,并提出基于阶跃稳态的性能衰退评估方法,定量直观地反映轴承性能衰退程度。最后,针对传统方法过度依赖专家经验及处理复杂时间序列预测精度低的问题,提出基于Attention‑LSTM的性能衰退预测方法,采用注意力机制提高对性能阶跃点前后数据的学习能力,加强了预测模型对衰退特征的反应敏感度。本发明通过实验验证了该预测方法具有更高的预测精度,鲁棒性和泛化能力。
-
公开(公告)号:CN111695521A
公开(公告)日:2020-09-22
申请号:CN202010539588.3
申请日:2020-06-15
申请人: 哈尔滨理工大学
摘要: 基于Attention-LSTM的滚动轴承性能衰退预测方法,属于旋转机械性能监测领域。首先,针对设备性能衰退评估过程中缺乏性能衰退指标以及监测信号难以直观表征轴承性能衰退特性的问题,通过时域与频域分析生成多个备选特征指标并采用相关性、单调性和鲁棒性三个指标其进行评价筛选,将特征值曲线通过固定窗均值化处理得到HI曲线和残差曲线,并提出基于阶跃稳态的性能衰退评估方法,定量直观地反映轴承性能衰退程度。最后,针对传统方法过度依赖专家经验及处理复杂时间序列预测精度低的问题,提出基于Attention-LSTM的性能衰退预测方法,采用注意力机制提高对性能阶跃点前后数据的学习能力,加强了预测模型对衰退特征的反应敏感度。本发明通过实验验证了该预测方法具有更高的预测精度,鲁棒性和泛化能力。
-
-