-
公开(公告)号:CN114612927B
公开(公告)日:2023-05-09
申请号:CN202011425821.1
申请日:2020-12-09
申请人: 四川大学
IPC分类号: G06V40/10 , G06V20/52 , G06V10/42 , G06V10/44 , G06V10/80 , G06V10/82 , G06F40/20 , G06N3/044 , G06N3/045 , G06N3/0464 , G06N3/08
摘要: 本发明公开了一种基于图像文本双通道联合的行人重识别方法,使用文本通道对图像通道进行辅助学习完成行人重识别的任务。在图像通道设计了局部特征分支和全局特征分支,使用局部特征注意到更多的细节信息,比如非遮挡区域,使用全局特征加强网络对图像整体的关注力;在文本通道提取出文本特征计算ID损失,并且将其与图像的全局特征进行联合训练,计算三元组损失,以实现文本特征对视觉特征的辅助。最后得到能够提取出更多细节信息的重识别网络,测试时仅使用图像通道即可得到较优的检索结果,证明了文本特征对视觉特征辅助的有效性。该方法适用于智能安防领域和智慧商业领域,例如人员追踪、顾客轨迹分析、景区人流分析。
-
公开(公告)号:CN114612927A
公开(公告)日:2022-06-10
申请号:CN202011425821.1
申请日:2020-12-09
申请人: 四川大学
摘要: 本发明公开了一种基于图像文本双通道联合的行人重识别方法,使用文本通道对图像通道进行辅助学习完成行人重识别的任务。在图像通道设计了局部特征分支和全局特征分支,使用局部特征注意到更多的细节信息,比如非遮挡区域,使用全局特征加强网络对图像整体的关注力;在文本通道提取出文本特征计算ID损失,并且将其与图像的全局特征进行联合训练,计算三元组损失,以实现文本特征对视觉特征的辅助。最后得到能够提取出更多细节信息的重识别网络,测试时仅使用图像通道即可得到较优的检索结果,证明了文本特征对视觉特征辅助的有效性。该方法适用于智能安防领域和智慧商业领域,例如人员追踪、顾客轨迹分析、景区人流分析。
-