-
公开(公告)号:CN109960756B
公开(公告)日:2021-04-09
申请号:CN201910207437.5
申请日:2019-03-19
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
IPC: G06F16/953 , G06F16/34 , G06F16/35 , G06F40/211
Abstract: 本发明公开了一种新闻事件信息归纳方法,包括:收集新闻素材,创建新闻库;从新闻库中获取目标事件的所有新闻文本,并进行热度分析,获取拐点新闻文本,抽取所述拐点新闻文本中的事件信息并保存;其中,获取拐点新闻文本的方法包括:统计所有新闻文本的热度值,按照新闻文本发布的时间顺序排序,构建热度值随时间变化的曲线图,取曲线图的所有极大点对应的新闻文本,即为所述拐点新闻文本,所述热度值为新闻的页面浏览量和网站独立访客量之和。本发明的方法通过选择对于目标新闻事件处于关键节点时的新闻文本——即拐点新闻文本进行摘要分析处理,准确地反映了新闻事件的发展态势。
-
公开(公告)号:CN118965192A
公开(公告)日:2024-11-15
申请号:CN202410924472.X
申请日:2024-07-11
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/2431 , G06F18/25 , G06N3/0455 , G06N3/0499 , G06N3/098 , G06F16/958
Abstract: 本公开提供一种基于多模态融合学习的生成式AI服务网站识别方法。输入人工智能生成服务网站的原始的多维度多模态信息,通过多模态特征提取模型将所述多维度信息转化为人工智能服务网站的文本、图片、代码三种特征向量,将所述三种特征向量输入多模态特征融合识别模型,输出人工智能生成服务网站是否提供人工智能服务的判别结果。本发明通过将网站的文本、图像和代码模态的特征融合实现更加准确的人工智能生成服务网站识别,以提高模型在新兴、多样化网站数据上的泛化性能,增强网站识别与分类模型泛化能力和适应性,突破单一数据类型进行分类的局限性,提高分类系统的泛化能力,使其能够适应不断变化和多样化的人工智能生成式网站内容。
-
公开(公告)号:CN109960756A
公开(公告)日:2019-07-02
申请号:CN201910207437.5
申请日:2019-03-19
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
IPC: G06F16/953 , G06F16/34 , G06F16/35 , G06F17/27
Abstract: 本发明公开了一种新闻事件信息归纳方法,包括:收集新闻素材,创建新闻库;从新闻库中获取目标事件的所有新闻文本,并进行热度分析,获取拐点新闻文本,抽取所述拐点新闻文本中的事件信息并保存;其中,获取拐点新闻文本的方法包括:统计所有新闻文本的热度值,按照新闻文本发布的时间顺序排序,构建热度值随时间变化的曲线图,取曲线图的所有极大点对应的新闻文本,即为所述拐点新闻文本,所述热度值为新闻的页面浏览量和网站独立访客量之和。本发明的方法通过选择对于目标新闻事件处于关键节点时的新闻文本——即拐点新闻文本进行摘要分析处理,准确地反映了新闻事件的发展态势。
-
-