一种垃圾邮件图像识别方法及装置

    公开(公告)号:CN102542290A

    公开(公告)日:2012-07-04

    申请号:CN201110435765.4

    申请日:2011-12-22

    Abstract: 本发明公开了一种垃圾邮件图像识别方法。该方法包括:将邮件图像划分为文本区域和非文本区域;将所述非文本区域从空域变换到频域,并分解为水平、垂直和对角方向的细节子图像;对各个细节子图像中的高频系数进行统计分析,利用噪声连通域面积的总和与非文本区域面积的比值度量邮件图像的含噪声程度;根据所述邮件图像的含噪声程度是否达到了预设门限值,判断所述邮件图像是否为垃圾邮件图像。借助于本发明的技术方案,提高了通过含噪声程度进行垃圾邮件图像识别技术的识别精度。本发明还公开了一种垃圾邮件图像识别装置,包括图像区域划分模块、图像分解模块、含噪程度计算模块和图像判别模块。

    一种基于联邦图神经网络的多语种社交事件检测方法

    公开(公告)号:CN113076422B

    公开(公告)日:2022-06-03

    申请号:CN202110406469.5

    申请日:2021-04-15

    Abstract: 本发明涉及社交事件检测技术领域,且公开了一种基于联邦图神经网络的多语种社交事件检测方法,包括以下步骤:S1:提取消息,将社交信息中的消息提取出来,然后将和消息有关的消息也提取出来当作异构图中的节点;S2:添加节点边,根据社交信息添加节点之间的边;S3:预训练阶段,使用图神经网络学习消息的表征,对消息图进行初始化并且初始化模型。本发明将社会信息中丰富的语义和结构信息融合在一起,以获取更多的知识,能够应对持续的社交检测事件,并使用动态社交流扩展其知识,可以实现不同语言模态数据环境下高准确性的事件检测,有效缓解了少样本的小语种事件检测难题。

Patent Agency Ranking