-
公开(公告)号:CN110851422A
公开(公告)日:2020-02-28
申请号:CN201911078822.0
申请日:2019-11-06
Applicant: 国家计算机网络与信息安全管理中心山西分中心
Abstract: 本发明涉及一种基于机器学习的数据异常监测模型构建方法,考虑到单一特征分析结果的片面性和不足,在对平台业务数据的分析中,引入了皮尔逊相关系数和方差扩大因子来对不同特征进行特征提取,提取出合适的特征数据进入聚类模型,对提升模型准确率有很大的提升;并且针对聚类模型,选用K-means算法的改进算法I-K-means算法模型,由于设计的主要目的是做异常处理,所以该算法不用将聚类进行到底再找异常,相比较于其它原始算法速度较快;综上基于机器学习建立的模型具有自学习、自演化的特性,可以适应复杂多变的网络环境,能够检测出未知异常,满足实时准确的需求。