一种基于非监督优化的深度学习非侵入式负荷监测方法

    公开(公告)号:CN113361454B

    公开(公告)日:2024-04-09

    申请号:CN202110710458.6

    申请日:2021-06-25

    Applicant: 东南大学

    Abstract: 本发明公开一种基于非监督优化的深度学习非侵入式负荷监测方法,第一部分为建立监督式神经网络深度学习模型;第二部分为利用非监督式学习方式对于模型的优化,第一部分包括:从目标负荷集群中监测一段时间内所有负荷信息;利用算法对数据预处理,对数据归一化;预处理过的数据进行神经网络训练;评估网络训练结果;第二部分为非监督式学习对模型的优化,利用K均值聚类算法对于各目标负荷聚类中心迭代,重新构成训练数据训练模型,利用非监督算法优化监督式学习算法,再对于用电行为分析。本发明非侵入式负荷监测方法,大幅提高利用深度学习算法处理非侵入式负荷监测问题的自学习能力、广泛性、灵敏度及准确度。

    一种基于非监督优化的深度学习非侵入式负荷监测方法

    公开(公告)号:CN113361454A

    公开(公告)日:2021-09-07

    申请号:CN202110710458.6

    申请日:2021-06-25

    Applicant: 东南大学

    Abstract: 本发明公开一种基于非监督优化的深度学习非侵入式负荷监测方法,第一部分为建立监督式神经网络深度学习模型;第二部分为利用非监督式学习方式对于模型的优化,第一部分包括:从目标负荷集群中监测一段时间内所有负荷信息;利用算法对数据预处理,对数据归一化;预处理过的数据进行神经网络训练;评估网络训练结果;第二部分为非监督式学习对模型的优化,利用K均值聚类算法对于各目标负荷聚类中心迭代,重新构成训练数据训练模型,利用非监督算法优化监督式学习算法,再对于用电行为分析。本发明非侵入式负荷监测方法,大幅提高利用深度学习算法处理非侵入式负荷监测问题的自学习能力、广泛性、灵敏度及准确度。

Patent Agency Ranking