-
公开(公告)号:CN116701001B
公开(公告)日:2023-10-20
申请号:CN202310989113.8
申请日:2023-08-08
申请人: 国网浙江省电力有限公司信息通信分公司 , 之江实验室 , 国网信息通信产业集团有限公司 , 国网浙江省电力有限公司磐安县供电公司
IPC分类号: G06F9/50
摘要: 本发明公开目标任务分配方法、装置、电子设备及存储介质,该方法包括:将目标任务拆分为多个算子;根据模型并行机制和数据并行机制对算子进行二次拆分;确定目标算子在边缘设备上的资源变化速率,得到算力更新速率表;确定每个边缘设备的剩余空闲资源量;根据算力更新速率表、每个边缘设备的设备类型、每个边缘设备的剩余空闲资源量、以及每个目标算子的计算资源需求量,确定多个目标算子和多个边缘设备的映射关系;根据映射关系将目标算子分配到多个边缘设备上。本方法在深度学习模型训练中,将目标任务分为多个目标算子,并将目标算子分配到对应的边缘设备上,通过不同的边缘设备对目标任务协同计算,有效地提高训练过程中的计算效率。
-
公开(公告)号:CN116701001A
公开(公告)日:2023-09-05
申请号:CN202310989113.8
申请日:2023-08-08
申请人: 国网浙江省电力有限公司信息通信分公司 , 之江实验室 , 国网信息通信产业集团有限公司 , 国网浙江省电力有限公司磐安县供电公司
IPC分类号: G06F9/50
摘要: 本发明公开目标任务分配方法、装置、电子设备及存储介质,该方法包括:将目标任务拆分为多个算子;根据模型并行机制和数据并行机制对算子进行二次拆分;确定目标算子在边缘设备上的资源变化速率,得到算力更新速率表;确定每个边缘设备的剩余空闲资源量;根据算力更新速率表、每个边缘设备的设备类型、每个边缘设备的剩余空闲资源量、以及每个目标算子的计算资源需求量,确定多个目标算子和多个边缘设备的映射关系;根据映射关系将目标算子分配到多个边缘设备上。本方法在深度学习模型训练中,将目标任务分为多个目标算子,并将目标算子分配到对应的边缘设备上,通过不同的边缘设备对目标任务协同计算,有效地提高训练过程中的计算效率。
-
公开(公告)号:CN116664450A
公开(公告)日:2023-08-29
申请号:CN202310922672.7
申请日:2023-07-26
摘要: 本发明公开基于扩散模型的图像增强方法、装置、设备及存储介质,方法包括:获取待增强的目标图像与图像增强指令,编码得到编码特征图和文本编码;将编码特征图和文本编码输入到预先训练好的目标图像增强网络中;按照预设噪声添加规则和预设步数,逐步向编码特征图中添加高斯噪声,得到服从高斯分布的目标噪声图像,并确定每一步添加高斯噪声后的结果图像中的预测噪声;基于交叉注意力机制,对目标噪声图像中与文本编码对应的区域进行图像增强,得到加噪增强图像;按照预设噪声去除规则和预设步数,逐步从加噪增强图像中去除每一步的预测噪声,得到去噪后图像;对去噪后图像进行解码,得到增强后图像。本发明有效地提高了对特征缺失较多的图像的增强效果。
-
-