一种基于预筛选动态集成的电力调度监控数据异常检测方法

    公开(公告)号:CN113112188B

    公开(公告)日:2022-05-17

    申请号:CN202110529491.9

    申请日:2021-05-14

    IPC分类号: G06Q10/06 G06Q50/06 G06K9/62

    摘要: 本发明实施例提出了一种基于预筛选动态集成的电力调度监控数据异常检测方法,包括:使用电力调度监控历史数据训练一定数量的基检测器;使用孤立森林方法对全部基检测器进行预筛选,筛选掉性能较差的基检测器;使用集成式KNN算法从历史数据中选择与待检测数据欧式距离较小的历史数据作为验证子集;使用最大值法根据筛选后剩余的基检测器在验证子集上的输出生成验证子集的假真值,计算基检测器在验证子集上的输出与假真值的皮尔逊相关系数;使用基于直方图的基检测器选择方法根据皮尔逊相关系数选择基检测器,平均所选基检测器的输出作为待检测数据的检测结果。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。

    一种基于动静态选择集成的电力调度监控数据异常检测方法

    公开(公告)号:CN114399407A

    公开(公告)日:2022-04-26

    申请号:CN202210147086.5

    申请日:2022-02-17

    IPC分类号: G06Q50/06 G06N3/08 G06K9/62

    摘要: 本发明实施例提出了一种基于动静态选择集成的电力调度监控数据异常检测方法,包括:使用电力调度监控历史数据训练一定数量的基检测器;使用孤立森林剔除性能较差的基检测器;使用平均值法根据剩余基检测器的输出生成历史数据的假真值,并分别将假真值和基检测器的输出转换为二类标签;剔除假真值过小的历史数据,并提取基检测器在剩余历史数据上的元特征和元标签;通过元特征和元标签训练随机森林;提取基检测器在待检测数据上的元特征,将其输入随机森林,根据随机森林的输出选择基检测器,取所选基检测器的输出的最大值作为待检测数据的检测结果。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。

    一种基于动静态选择集成的电力调度监控数据异常检测方法

    公开(公告)号:CN114399407B

    公开(公告)日:2024-08-27

    申请号:CN202210147086.5

    申请日:2022-02-17

    摘要: 本发明实施例提出了一种基于动静态选择集成的电力调度监控数据异常检测方法,包括:使用电力调度监控历史数据训练一定数量的基检测器;使用孤立森林剔除性能较差的基检测器;使用平均值法根据剩余基检测器的输出生成历史数据的假真值,并分别将假真值和基检测器的输出转换为二类标签;剔除假真值过小的历史数据,并提取基检测器在剩余历史数据上的元特征和元标签;通过元特征和元标签训练随机森林;提取基检测器在待检测数据上的元特征,将其输入随机森林,根据随机森林的输出选择基检测器,取所选基检测器的输出的最大值作为待检测数据的检测结果。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。

    一种基于密度距离综合决策的电力调度监控数据异常检测方法

    公开(公告)号:CN113608968A

    公开(公告)日:2021-11-05

    申请号:CN202110967252.1

    申请日:2021-08-23

    IPC分类号: G06F11/30

    摘要: 本发明实施例提出了一种基于密度距离综合决策的电力调度监控数据异常检测方法,包括:将电力调度监控历史数据作为输入数据集,通过局部可达距离与核密度估计来计算样本的局部密度;使用自然对数函数作为缩放函数,计算每个样本与其近邻的密度比;通过欧式距离找到每个样本密度比自身大的近邻,计算密度提升距离;将局部密度比与密度提升距离标准化后计算乘积,得到最终的异常分数,并判定数据中的异常样本。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。

    一种基于预筛选动态集成的电力调度监控数据异常检测方法

    公开(公告)号:CN113112188A

    公开(公告)日:2021-07-13

    申请号:CN202110529491.9

    申请日:2021-05-14

    IPC分类号: G06Q10/06 G06Q50/06 G06K9/62

    摘要: 本发明实施例提出了一种基于预筛选动态集成的电力调度监控数据异常检测方法,包括:使用电力调度监控历史数据训练一定数量的基检测器;使用孤立森林方法对全部基检测器进行预筛选,筛选掉性能较差的基检测器;使用集成式KNN算法从历史数据中选择与待检测数据欧式距离较小的历史数据作为验证子集;使用最大值法根据筛选后剩余的基检测器在验证子集上的输出生成验证子集的假真值,计算基检测器在验证子集上的输出与假真值的皮尔逊相关系数;使用基于直方图的基检测器选择方法根据皮尔逊相关系数选择基检测器,平均所选基检测器的输出作为待检测数据的检测结果。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。

    一种基于邻域分区与隔离重构的磁盘异常检测方法

    公开(公告)号:CN112562771B

    公开(公告)日:2022-07-26

    申请号:CN202011564817.3

    申请日:2020-12-25

    IPC分类号: G11C29/12

    摘要: 本发明实施例提出了一种基于邻域分区与隔离重构的磁盘异常检测方法,包括:收集磁盘SMART信息并筛选出有效的磁盘特征属性组成数据集,对其进行指数平滑处理得到磁盘训练集;多次随机采样训练集获得多个子训练集,在子集中以各点距其最近点的距离为半径构建磁盘特征隔离区域,将不属于任何区域的测试点作为全局异常;对于非全局异常的测试点,将其连续两个近邻点所在区域半径比作为该测试点在此区域的前异常值;包含测试点后重新构建区域,将测试点所处区域重构前后的半径比作为该测试点在此区域的后异常值;结合测试点所处所有区域的前后异常值得到异常分数,本发明实施例提供的技术方案,能有效提高异常磁盘召回率。

    一种基于近邻搜索分簇的电力调度监控数据异常检测方法

    公开(公告)号:CN114722947A

    公开(公告)日:2022-07-08

    申请号:CN202210383775.6

    申请日:2022-04-12

    IPC分类号: G06K9/62 G06N20/00 G06Q50/06

    摘要: 本发明实施例提出了一种基于近邻搜索分簇的电力调度监控数据异常检测方法,包括:将带正异常标签的电力调度监控历史数据作为训练数据集输入,通过计算样本之间的欧氏距离寻找异常样本在特征空间中的k个近邻;通过异常样本的近邻标签确定该样本是否为噪声或属于某个异常样本簇,并在该样本近邻中依次迭代搜索直到不再找到更多的属于该簇的异常样本;对分簇后的数据过滤噪声并计算每个簇中需要生成的异常样本数量,据此利用SMOTE线性插值在各个簇内合成新样本以平衡数据集;使用平衡后的数据集训练随机森林模型,以检测电力调度监控数据中的异常样本。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。

    一种基于反转信息熵动态集成的电力调度监控数据异常检测方法

    公开(公告)号:CN113128913A

    公开(公告)日:2021-07-16

    申请号:CN202110529495.7

    申请日:2021-05-14

    IPC分类号: G06Q10/06 G06Q50/06 G06K9/62

    摘要: 本发明实施例提出了一种基于反转信息熵动态集成的电力调度监控数据异常检测方法,包括:将电力调度监控历史数据划分为训练集和验证集,使用训练集训练一定数量的基分类器,基分类器的输出为输入数据属于正常类的概率;使用异常类标记方法将验证集中一部分历史数据标记为异常类;使用KNN算法从验证集中选择与待检测数据欧式距离较小的历史数据作为验证子集;使用基于反转信息熵的基分类器评价方法计算基分类器在验证子集中数据上的得分;使用基于无参数统计学假设检验的基分类器选择方法根据得分选择基分类器,平均所选基分类器的输出作为待检测数据的检测结果。本发明实施例提供的技术方案,能够降低电力调度监控数据异常检测的漏报率。

    一种基于邻域分区与隔离重构的磁盘异常检测方法

    公开(公告)号:CN112562771A

    公开(公告)日:2021-03-26

    申请号:CN202011564817.3

    申请日:2020-12-25

    IPC分类号: G11C29/12

    摘要: 本发明实施例提出了一种基于邻域分区与隔离重构的磁盘异常检测方法,包括:收集磁盘SMART信息并筛选出有效的磁盘特征属性组成数据集,对其进行指数平滑处理得到磁盘训练集;多次随机采样训练集获得多个子训练集,在子集中以各点距其最近点的距离为半径构建磁盘特征隔离区域,将不属于任何区域的测试点作为全局异常;对于非全局异常的测试点,将其连续两个近邻点所在区域半径比作为该测试点在此区域的前异常值;包含测试点后重新构建区域,将测试点所处区域重构前后的半径比作为该测试点在此区域的后异常值;结合测试点所处所有区域的前后异常值得到异常分数,本发明实施例提供的技术方案,能有效提高异常磁盘召回率。