一种基于图数字孪生的电力系统态势感知方法

    公开(公告)号:CN115841179A

    公开(公告)日:2023-03-24

    申请号:CN202211516874.3

    申请日:2022-11-29

    摘要: 一种基于图数字孪生的电力系统态势感知方法,具体涉及一种基于数字孪生的新型电力系统图学习态势感知方法,为了解决现有态势感知方法电力系统稳定性预测或多组件故障定位准确率较低的问题.根据图与数字孪生构建图数字孪生模型;利用图数字孪生模型对能源互联网的数据进行处理,并将处理的数据转化为图,得到图结构化数据;针对能源互联网的故障问题,构建基于图神经网络的态势感知模型Ⅰ;针对能源互联网的稳定性问题,构建基于图神经网络的态势感知模型Ⅱ;利用基于图神经网络的态势感知模型Ⅰ对图结构化数据进行处理,得到能源互联网的故障及其位置;根据故障及其位置和图利用基于图神经网络的态势感知模型Ⅱ预测故障后能源互联网的稳定性。

    基于多视图融合和宽度学习的超短期风电功率预测方法

    公开(公告)号:CN118763662A

    公开(公告)日:2024-10-11

    申请号:CN202410900108.X

    申请日:2024-07-05

    IPC分类号: H02J3/00 G06N20/00 G06F16/29

    摘要: 基于多视图融合和宽度学习的超短期风电功率预测方法,涉及风电功率预测领域。本发明是为了解决现有基于深度神经网络的风电功率预测方法还存在模型训练时间长、消耗计算资源多以及预测精度低的问题。本发明包括:利用t时刻前k个小时的平均风电功率序列及t时刻前k个小时的指标数据序列组成样本集;对样本集归一化,并利用归一化后的样本集获得训练集,利用训练集训练MCCA‑BL预测模型,获得训练好的MCCA‑BL预测模型;将预测风电功率相关数据集输入到训练好的MCCA_BL预测模型中,获得待预测时刻风电功率;指标数据包括:平均温度、最高温度、最低温度、气压、湿度、风速、风向、降雨量和云量。本发明用于预测风电功率。