一种基于XGBoost算法的生存分析方法

    公开(公告)号:CN113284612B

    公开(公告)日:2024-04-16

    申请号:CN202110560207.4

    申请日:2021-05-21

    Abstract: 本发明公开了一种基于XGBoost算法的生存分析方法,通过在原有的XGBoost方法中优化了目标函数,使用带有惩罚项的Cox回归作为新的学习目标。根据生存数据定制一个特定的损失函数,推导出损失函数的一阶和二阶梯度。并采用带有L1惩罚项的Cox偏似然估计的Breslow近似,导出了梯度的简化数学表达式。根据此表达式通过决策树算法优化个体危险比率预测值,从而实现了基于基因表达数据的疾病患者存活率的准确预测以及其对高维数据的解释性和适应性,有效预测患者的生存状态。

    一种基于多组学数据获取多基因风险评分的方法及系统

    公开(公告)号:CN111161799B

    公开(公告)日:2023-12-15

    申请号:CN201911353185.3

    申请日:2019-12-24

    Abstract: 本发明实施例公开了一种基于多组学数据获取多基因风险评分的方法及系统,其包括输入多组学原始数据并对所述多组学原始数据进行预处理;将预处理后数据划分为训练集与验证集后,基于所述训练集创建线性回归模型,基于所述验证集对所述线性回归模型进行验证,在验证合格后选定出作为多基因风险评分的评分模型;对输入的待测数据进行评分。本发明解决了现有技术中数据来源缺乏多样性,那么就会对多基因风险评分的有效性存在一定的限制的弊端。

    一种基于XGBoost算法的生存分析方法

    公开(公告)号:CN113284612A

    公开(公告)日:2021-08-20

    申请号:CN202110560207.4

    申请日:2021-05-21

    Abstract: 本发明公开了一种基于XGBoost算法的生存分析方法,通过在原有的XGBoost方法中优化了目标函数,使用带有惩罚项的Cox回归作为新的学习目标。根据生存数据定制一个特定的损失函数,推导出损失函数的一阶和二阶梯度。并采用带有L1惩罚项的Cox偏似然估计的Breslow近似,导出了梯度的简化数学表达式。根据此表达式通过决策树算法优化个体危险比率预测值,从而实现了基于基因表达数据的疾病患者存活率的准确预测以及其对高维数据的解释性和适应性,有效预测患者的生存状态。

    一种基于多组学数据获取多基因风险评分的方法及系统

    公开(公告)号:CN111161799A

    公开(公告)日:2020-05-15

    申请号:CN201911353185.3

    申请日:2019-12-24

    Abstract: 本发明实施例公开了一种基于多组学数据获取多基因风险评分的方法及系统,其包括输入多组学原始数据并对所述多组学原始数据进行预处理;将预处理后数据划分为训练集与验证集后,基于所述训练集创建线性回归模型,基于所述验证集对所述线性回归模型进行验证,在验证合格后选定出作为多基因风险评分的评分模型;对输入的待测数据进行评分。本发明解决了现有技术中数据来源缺乏多样性,那么就会对多基因风险评分的有效性存在一定的限制的弊端。

Patent Agency Ranking