一种联邦学习场景下的全连接神经网络模型聚合方法

    公开(公告)号:CN112749790A

    公开(公告)日:2021-05-04

    申请号:CN202110081944.6

    申请日:2021-01-21

    Abstract: 本发明公开了一种联邦学习场景下的全连接神经网络模型聚合方法,属于人工智能领域,该方法通过中央服务器向提供独立模型的所有用户下发神经网络的超参数和参数,每个用户根据从中央服务器得到的超参数建立统一的神经网络;每个用户将神经网络的初始值设为从中央服务器得到的参数,并利用各自的数据进行各自的神经网络训练;在各自的神经网络训练结束后,每个用户向中央服务器上传各自的神经网络参数,即用户模型参数;中央服务器收集所有用户模型参数,进行聚合,得到联合模型;中央服务器判定是否达到循环次数;通过逐层逼近由每个客户端模型得到的特征,可得到适合所有用户使用的统一模型;提高了联合模型的全局准确率和泛化能力。

    一种联邦学习场景下的全连接神经网络模型聚合方法

    公开(公告)号:CN112749790B

    公开(公告)日:2024-12-06

    申请号:CN202110081944.6

    申请日:2021-01-21

    Abstract: 本发明公开了一种联邦学习场景下的全连接神经网络模型聚合方法,属于人工智能领域,该方法通过中央服务器向提供独立模型的所有用户下发神经网络的超参数和参数,每个用户根据从中央服务器得到的超参数建立统一的神经网络;每个用户将神经网络的初始值设为从中央服务器得到的参数,并利用各自的数据进行各自的神经网络训练;在各自的神经网络训练结束后,每个用户向中央服务器上传各自的神经网络参数,即用户模型参数;中央服务器收集所有用户模型参数,进行聚合,得到联合模型;中央服务器判定是否达到循环次数;通过逐层逼近由每个客户端模型得到的特征,可得到适合所有用户使用的统一模型;提高了联合模型的全局准确率和泛化能力。

Patent Agency Ranking