-
公开(公告)号:CN116524596A
公开(公告)日:2023-08-01
申请号:CN202310507915.0
申请日:2023-05-08
申请人: 大连理工大学
IPC分类号: G06V40/20 , G06V20/40 , G06V10/40 , G06V10/62 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/08
摘要: 本发明属于计算机视觉与视频动作识别领域,公开了一种基于动作粒度分组结构的体育视频动作识别方法,提出了一种基于动作粒度的层次化分组结构,设计了一种轻量级的多尺度时空建模与信息融合机制。步骤如下:视频抽帧,分段随机帧采样,视频帧预处理,选取骨干网络,在骨干网络中插入动作粒度分组模块实现多尺度时空特征聚合,使用全连接层和softmax层进行类别预测,使用交叉熵损失对动作类别进行训练,训练及验证。通过使用本发明可有效的提取多粒度动作信息,适用于包含多层次类别的体育视频动作识别,并显著提高体育视频动作识别的精度。本发明作为一种基于动作粒度分组结构的体育视频动作识别方法,可广泛应用于体育视频动作识别领域。