-
公开(公告)号:CN113469097A
公开(公告)日:2021-10-01
申请号:CN202110789818.6
申请日:2021-07-13
申请人: 大连理工大学人工智能大连研究院 , 大连理工大学
摘要: 本发明涉及机器学习、图像识别领域,具体涉及一种基于SSD网络的水面漂浮物多相机实时检测方法,包括以下步骤:步骤1:通过视频录制、相机拍摄和网络收集来采集水面漂浮物数据;步骤2:采用数据降噪和数据增强算法进行水面漂浮物数据扩增;步骤三:采用Labelimg工具对水面漂浮物数据集标注;步骤四:采用迁移学习对SSD网络模型进行训练获取最优权重模型;步骤五:基于SSD网络最优权重模型的多相机水面漂浮物目标实时检测。本发明基于SSD网络对水面漂浮物进行多相机实时检测,能够有效降低光照、天气和动态背景对实时检测造成的干扰,同时弥补单一相机检测的缺陷,满足实时性和精度的要求。
-
公开(公告)号:CN114022812B
公开(公告)日:2024-05-10
申请号:CN202111282062.2
申请日:2021-11-01
申请人: 大连理工大学 , 大连理工大学人工智能大连研究院
摘要: 一种基于轻量化SSD的DeepSort水面漂浮物多目标跟踪方法,属于机器学习、目标跟踪领域。首先,获得若干水面漂浮物的连续视频帧。其次,输入水面漂浮物视频数据,通过轻量化的SSD检测算法获取当前帧的水面漂浮物目标检测框,基于视频当前帧的目标检测框进行状态预测,获得当前视频帧下的水面漂浮物目标跟踪框。再次,计算所有水面漂浮物目标检测框和跟踪框之间的运动匹配度和表观匹配度,将运动匹配度和表观匹配度进行综合匹配得到关联代价。最后,通过匈牙利算法将水面漂浮物的关联代价矩阵Ci,j进行关联匹配,确定跟踪结果。本发明能够实现水面漂浮物多目标跟踪,降低反向传播的参数数量和内存成本,提高数据关联的准确性,改善光照和遮挡物的影响。
-
公开(公告)号:CN113469097B
公开(公告)日:2023-10-17
申请号:CN202110789818.6
申请日:2021-07-13
申请人: 大连理工大学人工智能大连研究院 , 大连理工大学
IPC分类号: G06V20/10 , G06V20/52 , G06V10/30 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/084 , G06N3/096
摘要: 本发明涉及机器学习、图像识别领域,具体涉及一种基于SSD网络的水面漂浮物多相机实时检测方法,包括以下步骤:步骤1:通过视频录制、相机拍摄和网络收集来采集水面漂浮物数据;步骤2:采用数据降噪和数据增强算法进行水面漂浮物数据扩增;步骤三:采用Labelimg工具对水面漂浮物数据集标注;步骤四:采用迁移学习对SSD网络模型进行训练获取最优权重模型;步骤五:基于SSD网络最优权重模型的多相机水面漂浮物目标实时检测。本发明基于SSD网络对水面漂浮物进行多相机实时检测,能够有效降低光照、天气和动态背景对实时检测造成的干扰,同时弥补单一相机检测的缺陷,满足实时性和精度的要求。
-
公开(公告)号:CN114022812A
公开(公告)日:2022-02-08
申请号:CN202111282062.2
申请日:2021-11-01
申请人: 大连理工大学 , 大连理工大学人工智能大连研究院
摘要: 一种基于轻量化SSD的DeepSort水面漂浮物多目标跟踪方法,属于机器学习、目标跟踪领域。首先,获得若干水面漂浮物的连续视频帧。其次,输入水面漂浮物视频数据,通过轻量化的SSD检测算法获取当前帧的水面漂浮物目标检测框,基于视频当前帧的目标检测框进行状态预测,获得当前视频帧下的水面漂浮物目标跟踪框。再次,计算所有水面漂浮物目标检测框和跟踪框之间的运动匹配度和表观匹配度,将运动匹配度和表观匹配度进行综合匹配得到关联代价。最后,通过匈牙利算法将水面漂浮物的关联代价矩阵Ci,j进行关联匹配,确定跟踪结果。本发明能够实现水面漂浮物多目标跟踪,降低反向传播的参数数量和内存成本,提高数据关联的准确性,改善光照和遮挡物的影响。
-
-
-