一种铬基无机物耦合过渡金属氮掺杂碳催化剂的制备方法

    公开(公告)号:CN115763845B

    公开(公告)日:2024-03-19

    申请号:CN202211456797.7

    申请日:2022-11-21

    摘要: 一种铬基无机物耦合过渡金属氮掺杂碳催化剂的制备方法,属于电催化领域。所述方法以配置金属M‑联吡啶溶液为起点,然后在上述溶液中依次加入氯化钠、铬盐和有机铵盐并搅拌使固体溶解后蒸干得到混合粉末;然后通过退火‑去模板‑酸洗‑抽滤‑干燥得到催化剂。具有以下优点:通过熔融盐模板法将铬盐无机物载体引入到M‑N‑C原子级分散催化剂中取代常规碳载体,该方法适用于多种金属‑氮共掺杂碳催化剂(如Fe、Cu、Ni等);催化剂为相互连接纳米晶体组成的超薄的二维片状,可有效提升传质能力;铬基无机盐引入可提升法拉第效率、催化活性以及在高电流、长时间工作条件下的耐久性,明显优于商业铂碳催化剂以及过渡金属氮掺杂碳。

    一种质子交换膜燃料电池无裂纹膜电极的制备方法

    公开(公告)号:CN117254042A

    公开(公告)日:2023-12-19

    申请号:CN202311334431.7

    申请日:2023-10-16

    IPC分类号: H01M4/88 H01M4/92 H01M8/1004

    摘要: 一种质子交换膜燃料电池无裂纹膜电极的制备方法,它涉及质子交换膜燃料电池膜电极的制备方法。它是要解决现有的直涂法制备质子交换膜燃料电池膜电极时催化层时存在的质子交换膜溶胀严重、催化层龟裂、三相反应界面数量少而影响电池性能及耐久性的技术问题。本方法:一、制备氧、氟双掺杂改性碳载体;二、制备高载量Pt/C催化剂;三、配置免消泡催化剂浆料;四、催化层的涂覆与干燥,得到质子交换膜燃料电池无裂纹催化层。本发明制备的催化层无龟裂且均匀、平整,在燃料电池中,催化层的峰值功率密度达到1.42W/cm2,在额定电压0.65V处,功率密度能够达到1.23W/cm2。可用于质子交换膜燃料电池领域。

    一种钛基梯度钌涂层阳极的制备方法及应用

    公开(公告)号:CN114875440A

    公开(公告)日:2022-08-09

    申请号:CN202210367427.X

    申请日:2022-04-08

    摘要: 一种钛基梯度钌涂层阳极的制备方法及应用,它涉及钛基涂层阳极的制备方法和应用,它是要解决现有的钛阳极的制备方法成本高、污染环境的技术问题。本方法:一、对钛基体预处理;二、配制不同组分的涂层液;三、在钛基体表面制备具有催化活性的涂层。将该钛基梯度钌涂层阳极作为阳极,以钛片或钛网或者该钛基梯度钌涂层阳极作为阴极,以水、NaCl溶液、稀盐酸溶液或含有余氯的自来水为电解液,电解制备氧气、氢气、氯气及次氯酸。可用于电解领域。

    原子级分散的金属与氮共掺杂碳基氧还原反应催化剂的制备方法

    公开(公告)号:CN110013881B

    公开(公告)日:2021-10-15

    申请号:CN201910365277.7

    申请日:2019-04-30

    IPC分类号: B01J31/28

    摘要: 本发明公开了一种原子级分散的金属与氮共掺杂碳基氧还原反应催化剂的制备方法,所述方法包括如下步骤:步骤一、将过渡金属盐溶解到溶剂中,得到溶液A;步骤二、将氮掺杂碳材料加入到溶液A中,得到溶液B;步骤三、将溶液B室温下超声、搅拌处理,使金属离子充分吸附到碳材料微孔内;步骤四、离心收集吸附有金属离子的氮掺杂碳材料,真空干燥后得到前驱体C;步骤五、将前驱体C在惰性气氛中进行热活化,得到高性能M‑N‑C催化剂。本发明的制备方法有效提高了原子级分散的活性位点的密度进而提高催化剂活性,能够制备具有原子级分散的、高活性位点密度的M‑N‑C催化剂,而且简单可行的优点易于实现大规模商业化应用。

    一种高容量、高倍率与高振实密度钠离子电池正极材料及其制备方法

    公开(公告)号:CN112652763A

    公开(公告)日:2021-04-13

    申请号:CN202011534282.5

    申请日:2020-12-22

    摘要: 一种高容量、高倍率与高振实密度钠离子电池正极材料及其制备方法,制备方法为:采用共沉淀法制备锰镍钴碳酸盐球形前驱体;将锰镍钴碳酸盐球形前驱体与锂源进行均匀混合、煅烧,获得球形富锂锰基正极材料;将球形富锂锰基正极材料进行离子交换后处理,得到高容量、高倍率与高振实密度钠离子电池正极材料。本发明通过晶体成核控制剂与络合剂的共同作用,降低共沉淀体系的结晶表面能,构筑微米级致密球形颗粒提高材料振实密度,利用低熔点钠盐与富锂材料发生离子交换反应,使富锂材料中的部分锂离子与钠离子交换,同时脱出部分过渡金属离子,共同实现钠离子嵌入与过渡金属空位构筑,克服富锂材料无法直接用作高容量钠离子正极材料的缺点。