一种融合GAM、CARAFE和SnIoU的车辆目标检测方法

    公开(公告)号:CN115588126A

    公开(公告)日:2023-01-10

    申请号:CN202211194651.X

    申请日:2022-09-29

    摘要: 本发明公开了一种融合GAM、CARAFE和SnIoU的车辆目标检测方法,包括:将数据集转换为适合YOLOv5训练的格式,对图像进行数据增强,然后在YOLOv5主干网络及颈部网络添加GAM模块,在颈部网络使用CARAFE替换最近邻插值上采样,最后将SnIoU‑Loss作为该算法的损失函数,完成在监控视角下对多种车辆的检测。本发明在主干网络结合GAM注意力机制,在颈部网络组合注意力模块和内容感知特征重组上采样,将底层的内容信息来预测重组内核,并在预定义的附近区域内重组特征,再针对这些不同尺度的特征学习全局权重信息并高效融合,还提出了一种损失函数,帮助训练收敛过程和效果。本发明能够解决现有的目标被遮挡、模糊和检测精度较差的问题。