-
公开(公告)号:CN116286342A
公开(公告)日:2023-06-23
申请号:CN202211662613.2
申请日:2022-12-23
IPC分类号: C12M3/00 , B01L3/00 , C12N5/0797 , C12N5/071 , C12Q1/02 , B33Y80/00 , B33Y10/00 , A61L27/56 , A61L27/38 , A61L27/52 , A61L27/22 , A61L27/20
摘要: 本发明公开了一种生物3D打印快速构建类人脑皮质器官芯片的方法及其应用。包括微流控芯片的制备方法、类人脑皮质水凝胶的制备、类人脑皮质的打印三部分。微流控芯片包括混流通道层,液池层、微孔阵列层、类人脑皮质培养层、培养基回收层五层结构。类人脑皮质水凝胶由明胶、海藻酸盐、透明质酸组成。通过悬浮浴挤出打印的方式,将类人脑皮质直接打印在微流控芯片中,封装得到类人脑皮质器官芯片。本发明克服了传统细胞培养的缺点,通过生物3D打印直接在器官芯片中原位构建具有三层结构相互联结的大尺度类人脑皮质,通过灌流培养,模仿脑脊液循环,利于物质交换、维持细胞活性、细胞分化诱导,可广泛用于脑疾病的药物研发。
-
公开(公告)号:CN115521134B
公开(公告)日:2023-05-23
申请号:CN202211309618.7
申请日:2022-10-25
摘要: 本发明公开了一种贝壳仿生陶瓷刀具的制备方法及贝壳仿生陶瓷刀具,贝壳仿生陶瓷刀具由组分不同的陶瓷材料交替堆叠组成,采用冷压成型的方法来压制坯体,每装填一层陶瓷粉料,则使用工作面具有螺旋线型凸起或者多圈同心圆环凸起的石墨压头进行预压,最后一层使用石墨棒压制,并施加一定的压力对整个坯体进行压制以促进各层陶瓷粉料的结合,进而使各层之间的界面具有复杂的形状,增大了各层之间的结合面积,起到阻碍裂纹扩展、延长裂纹扩展路径、提高界面结合强度的作用;之后采用热压烧结使坯体致密化从而获得贝壳仿生陶瓷刀具,制备的陶瓷刀具致密度高,晶粒大小均匀,界面结合紧密,陶瓷刀具的力学性能以及使用寿命得到提高。
-
公开(公告)号:CN116854451A
公开(公告)日:2023-10-10
申请号:CN202310763432.7
申请日:2023-06-26
IPC分类号: C04B35/10 , C04B35/622 , C04B35/626 , C04B35/634
摘要: 本发明属于陶瓷刀具技术领域,具体涉及一种仿生陶瓷刀具及其分散制备工艺。仿生陶瓷刀具的分散制备工艺包括以下步骤:分别配置表层材料原料浆料和中间层材料原料浆料;依次混合表层材料原料浆料,混合的同时进行超声和搅拌,进一步加入PEG 2000并进行超声和搅拌,获得表层材料复合浆料;表层材料复合浆料进行球磨、干燥、过筛获得表层材料;依据表层材料的制备方法获得获得中间层材料;表层材料、中间层材料依次交替叠层装入石墨套筒中,烧结、研磨、抛光后得到仿生陶瓷刀具。本发明通过加入分散剂以及改进分散工艺流程,实现改变难分散相的微观作用机理等技术性问题,改善了仿生陶瓷刀具难分散的问题。
-
公开(公告)号:CN115000203A
公开(公告)日:2022-09-02
申请号:CN202210697039.8
申请日:2022-06-20
IPC分类号: H01L31/0236 , H01L21/268
摘要: 本发明公开了一种单晶硅微纳双尺度减反射绒面及其制备方法,该制备方法将纳秒激光辅助水射流近无损伤加工和飞秒激光扫描相结合,通过将纳秒激光辅助水射流近无损伤加工技术和超短脉冲飞秒激光“冷”加工技术相结合,可有效降低单晶硅激光制绒过程中的重铸层现象和热裂纹引起的亚表面损伤;同时通过调整纳秒激光辅助水射流工艺参数和飞秒激光工艺参数可以对微米尺度框架结构和纳米尺度结构分别进行灵活的修改,可以在一个微纳双尺度混合结构中同时实现几何陷光效应和有效介质效应,减少表面反射。
-
公开(公告)号:CN113679888B
公开(公告)日:2022-07-15
申请号:CN202110988608.X
申请日:2021-08-26
IPC分类号: A61L27/22 , A61L27/20 , A61L27/02 , A61L27/50 , A61L27/52 , A61L27/54 , B33Y10/00 , B33Y70/10 , B33Y80/00
摘要: 本发明涉及医用材料技术领域,具体涉及一种光固化成型复合水凝胶基质前驱体及其制备方法和带有其的支架。光固化成型复合水凝胶基质前驱体包括甲基丙烯酰化明胶;海藻酸钠;羧甲基纤维素钠;硫酸软骨素;其中,光引发剂:甲基丙烯酰化明胶:海藻酸钠:羧甲基纤维素钠:硫酸软骨素的质量比为0.2~0.3:8~10:1~3:0.6~0.8:0.05~0.07。采用所述光固化成型复合水凝胶基质前驱体挤出3D生物打印技术可以实现载细胞打印水凝胶支架,支架的形态可控、成型性好、精度高,具有较好的稳定性;具有较好的生物相容性和生物活性,能够为成纤维细胞提供生长的良好环境;制备过程简单,可以在短时间内完成,通过调整原料比例来调节3D打印水凝胶支架的孔隙率以及力学性能。
-
公开(公告)号:CN114394839A
公开(公告)日:2022-04-26
申请号:CN202210026265.3
申请日:2022-01-11
IPC分类号: C04B35/587 , C04B35/645
摘要: 本发明涉及新材料技术领域,尤其涉及一种氮化碳复合陶瓷刀具材料、其制备方法与切削刀具,其原料包括氮化碳、碳氮化钛、钼、镍和钴,以氮化碳作为基体相,碳氮化钛作为增强相添加到氮化碳基复合陶瓷材料中,配以钼、镍和钴作为合适的烧结助剂,通过真空热压烧结工艺制备出致密的复合刀具材料。制备的氮化碳基复合陶瓷刀具材料具有低成本、高硬度、高抗弯强度和高断裂韧度等优势,是促进氮化碳材料的创新、发展、推广应用的重要途径。
-
公开(公告)号:CN113929957A
公开(公告)日:2022-01-14
申请号:CN202111353695.8
申请日:2021-11-16
摘要: 本发明公开了一种多孔气凝胶支架及其制备方法与应用,在缓冲液中加入光引发剂和聚乙二醇二丙烯酸酯,加热溶解,并混合均匀,然后向混合液中加入普朗尼克F127,低温静置,得气凝胶支架材料;采用3D打印技术打印水凝胶支架,并紫外光照射,使其发生交联,形成结构稳定的三维支架,低温浸泡去除普朗尼克F127,冷冻干燥,即得。将普朗尼克F127作为牺牲材料,水凝胶支架3D打印完成后,将普朗尼克F127去除,结合冷冻干燥技术,可在支架中形成多孔结构,有利于细胞三维培养时存活、生长和增殖。
-
公开(公告)号:CN113679888A
公开(公告)日:2021-11-23
申请号:CN202110988608.X
申请日:2021-08-26
IPC分类号: A61L27/22 , A61L27/20 , A61L27/02 , A61L27/50 , A61L27/52 , A61L27/54 , B33Y10/00 , B33Y70/10 , B33Y80/00
摘要: 本发明涉及医用材料技术领域,具体涉及一种光固化成型复合水凝胶基质前驱体及其制备方法和带有其的支架。光固化成型复合水凝胶基质前驱体包括甲基丙烯酰化明胶;海藻酸钠;羧甲基纤维素钠;硫酸软骨素;其中,光引发剂:甲基丙烯酰化明胶:海藻酸钠:羧甲基纤维素钠:硫酸软骨素的质量比为0.2~0.3:8~10:1~3:0.6~0.8:0.05~0.07。采用所述光固化成型复合水凝胶基质前驱体挤出3D生物打印技术可以实现载细胞打印水凝胶支架,支架的形态可控、成型性好、精度高,具有较好的稳定性;具有较好的生物相容性和生物活性,能够为成纤维细胞提供生长的良好环境;制备过程简单,可以在短时间内完成,通过调整原料比例来调节3D打印水凝胶支架的孔隙率以及力学性能。
-
公开(公告)号:CN116854451B
公开(公告)日:2024-07-05
申请号:CN202310763432.7
申请日:2023-06-26
IPC分类号: C04B35/10 , C04B35/622 , C04B35/626 , C04B35/634
摘要: 本发明属于陶瓷刀具技术领域,具体涉及一种仿生陶瓷刀具及其分散制备工艺。仿生陶瓷刀具的分散制备工艺包括以下步骤:分别配置表层材料原料浆料和中间层材料原料浆料;依次混合表层材料原料浆料,混合的同时进行超声和搅拌,进一步加入PEG 2000并进行超声和搅拌,获得表层材料复合浆料;表层材料复合浆料进行球磨、干燥、过筛获得表层材料;依据表层材料的制备方法获得获得中间层材料;表层材料、中间层材料依次交替叠层装入石墨套筒中,烧结、研磨、抛光后得到仿生陶瓷刀具。本发明通过加入分散剂以及改进分散工艺流程,实现改变难分散相的微观作用机理等技术性问题,改善了仿生陶瓷刀具难分散的问题。
-
公开(公告)号:CN115338542B
公开(公告)日:2024-05-28
申请号:CN202210980509.1
申请日:2022-08-16
IPC分类号: B23K26/352 , B23K26/146 , B23K26/0622
摘要: 本发明属于激光微细加工技术领域,涉及一种具有疏水性功能表面的单晶硅及其制备方法与应用。其制备方法为,在单晶硅表面进行激光辅助水射流加工,使得单晶硅表面形成微米级结构阵列;通过飞秒激光诱导低频周期性表面结构在微米级结构阵列表面形成纳米结构,从而在单晶硅表面形成微纳双尺度的分层结构;将表面具有微纳双尺度的分层结构的单晶硅浸入至疏水性硅烷中进行硅烷化处理,即得;其中,激光辅助水射流加工中,水射流沿扫描速度方向后置于激光。本发明能够在单晶硅表面形成微纳双尺度分层结构的基础上,使单晶硅表面具备疏水性或超疏水性。
-
-
-
-
-
-
-
-
-