-
公开(公告)号:CN106777402A
公开(公告)日:2017-05-31
申请号:CN201710141807.0
申请日:2017-03-10
申请人: 山东师范大学
CPC分类号: G06F17/30244 , G06F17/30634 , G06N3/0454
摘要: 本发明公开了一种基于稀疏神经网络的图像检索文本方法,构建两个独立的稀疏神经网络模型,然后分别把图像和文本的底层特征输入到稀疏神经网络模型中,将两个稀疏神经网络模型的输出作为图像和文本的语义理解,并将其视为图像和文本的语义空间,在此语义空间中进行图像检索文本操作,并根据检索结果排序,检索出与查询图像最匹配的文本。本发明将图像和文本投影到二者共同的语义空间,充分利用了二者的语义信息,并将稀疏编码的思想引入传统的反向传播神经网络,稀疏的限制强制网络去学习有用的信息,所以能提高检索准确度。
-
公开(公告)号:CN106777402B
公开(公告)日:2018-09-11
申请号:CN201710141807.0
申请日:2017-03-10
申请人: 山东师范大学
摘要: 本发明公开了一种基于稀疏神经网络的图像检索文本方法,构建两个独立的稀疏神经网络模型,然后分别把图像和文本的底层特征输入到稀疏神经网络模型中,将两个稀疏神经网络模型的输出作为图像和文本的语义理解,并将其视为图像和文本的语义空间,在此语义空间中进行图像检索文本操作,并根据检索结果排序,检索出与查询图像最匹配的文本。本发明将图像和文本投影到二者共同的语义空间,充分利用了二者的语义信息,并将稀疏编码的思想引入传统的反向传播神经网络,稀疏的限制强制网络去学习有用的信息,所以能提高检索准确度。
-