具有用户依赖关系的边缘计算卸载及资源分配方法及系统

    公开(公告)号:CN116782249A

    公开(公告)日:2023-09-19

    申请号:CN202311018645.3

    申请日:2023-08-14

    IPC分类号: H04W16/22 H04W28/16 H04W28/20

    摘要: 本公开提供了具有用户依赖关系的边缘计算卸载及资源分配方法及系统,涉及边缘计算技术领域,初始化边缘服务器和用户移动设备的节点网络模型,获取任务在本地计算处理的时间,构建边缘服务器与用户移动设备之间的无线网络通信模型;获取将任务卸载至边缘服务器所需要的任务传输时间以及边缘服务器上执行处理每个任务的时间;考虑用户间有任务依赖关系,当前任务只有在所有前驱任务都已完成的情况下才能开始被卸载分配,以最小化总任务延迟和任务丢失率为目标构建卸载优化模型,求解该卸载优化模型,获取将任务映射到卸载优化模型中的最佳函数,并获取最大的长期奖励,获取最佳分配结果,本公开减少时延与降低任务丢失率。

    一种边缘计算中具有依赖关系任务的计算卸载方法及系统

    公开(公告)号:CN116755882A

    公开(公告)日:2023-09-15

    申请号:CN202310720676.7

    申请日:2023-06-16

    IPC分类号: G06F9/50 G06N7/01

    摘要: 本公开提供了一种边缘计算中具有依赖关系任务的计算卸载方法及系统,涉及边缘计算技术领域,包括初始化卸载环境,获取具有依赖关系的任务序列构建有向无环图DAG,对具有依赖关系的任务序列卸载问题建模为马尔可夫决策过程;引入关键任务的优先级概念,根据任务的优先级值对DAG的任务序列进行拓扑排序,将任务嵌入到一系列向量中,获取任务嵌入序列;将任务序列卸载问题转换为序列到序列预测问题,将任务嵌入序列输入到序列到序列神经网络中,所述序列到序列神经网络中引入注意力机制,输出每个任务的卸载决策;用户设备和边缘服务器根据每个任务的卸载决策协同完成所有任务的卸载执行。本公开能有效平衡任务时延和能耗的计算任务卸载。