一种3D点云分类攻击防御方法、装置、设备及存储介质

    公开(公告)号:CN113838211A

    公开(公告)日:2021-12-24

    申请号:CN202111081192.X

    申请日:2021-09-15

    Applicant: 广州大学

    Abstract: 本申请涉及一种3D点云分类攻击防御方法、装置、设备及存储介质,其方法包括获取输入分类模型的原始点云样本,对原始点云样本进行点的删除与扰动;将预处理点云样本输入编码器,基于DGCNN网络结构学习预处理点云样本的几何特征;使特征点云样本的几何特征输入解码器,基于二维规则网格从二维流形空间重构出三维的点云;迭代训练重构点云样本,并限制原始点云样本和重构点云样本之间的距离和重构点云样本中每一点与其预设数量最近邻域点的距离,直至训练的输出样本接近原始点云样本再输出,替换原始点云样本。解决了3D点云神经网络很容易受到对抗性样本攻击的问题。本申请具有改善3D点云神经网络防御性能的效果。

    缓解神经网络对未知类样本产生错误分类的方法及装置

    公开(公告)号:CN111507396B

    公开(公告)日:2023-08-08

    申请号:CN202010297682.2

    申请日:2020-04-15

    Applicant: 广州大学

    Abstract: 本发明公开了一种缓解神经网络对未知类样本产生错误分类的方法及装置,所述方法在训练神经网络的时候,将原始训练集和未知类样本训练集输入到神经网络中进行训练,对于原始训练集通过第一损失函数进行训练,对于未知类样本训练集通过第二损失函数进行训练,当神经网络的总损失函数达到最小值时,神经网络训练完成,由于只有当神经网络对原始训练集中的训练样本的类别做出最高置信度的正确预测时,第一损失函数的损失值最小,而当神经网络对未知类样本的训练样本的类别做出最低置信度的错误预测时,第二损失函数的损失值最小,因此通过实施本发明实施例能缓解现有神经网络对于未知类样本产生高置信度错误分类的问题。

    缓解神经网络对未知类样本产生错误分类的方法及装置

    公开(公告)号:CN111507396A

    公开(公告)日:2020-08-07

    申请号:CN202010297682.2

    申请日:2020-04-15

    Applicant: 广州大学

    Abstract: 本发明公开了一种缓解神经网络对未知类样本产生错误分类的方法及装置,所述方法在训练神经网络的时候,将原始训练集和未知类样本训练集输入到神经网络中进行训练,对于原始训练集通过第一损失函数进行训练,对于未知类样本训练集通过第二损失函数进行训练,当神经网络的总损失函数达到最小值时,神经网络训练完成,由于只有当神经网络对原始训练集中的训练样本的类别做出最高置信度的正确预测时,第一损失函数的损失值最小,而当神经网络对未知类样本的训练样本的类别做出最低置信度的错误预测时,第二损失函数的损失值最小,因此通过实施本发明实施例能缓解现有神经网络对于未知类样本产生高置信度错误分类的问题。

Patent Agency Ranking