-
公开(公告)号:CN108256447A
公开(公告)日:2018-07-06
申请号:CN201711480429.5
申请日:2017-12-29
申请人: 广州海昇计算机科技有限公司
摘要: 本发明公开了一种基于深度神经网络的无人机航拍视频分析方法,步骤为:将采集到的无人机航拍视频上传至视频平台;建立无人机航拍人群分析库,建立训练集和测试集;训练并测试模型直至测试正确率大于期望值;保存并应用训练后的模型,对无人机航拍视频平台上实时采集到的视频进行分析处理;保存并统计分析处理结果。本发明方法结合无人机航拍人群分析库和深度学习神经网络模型,能够自动实时对无人机航拍视频进行人群行为识别和分析,从而能够在相应情况下作出预警,降低人群相关事故发生的概率,其分析方法相对于以往的人工分析方法,分析更准确,效率更高。本发明作为一种基于深度神经网络的无人机航拍视频分析方法可广泛应用于数据处理领域。
-
公开(公告)号:CN110728316A
公开(公告)日:2020-01-24
申请号:CN201910943862.0
申请日:2019-09-30
申请人: 广州海昇计算机科技有限公司
摘要: 本发明公开了一种课堂行为检测方法、系统、装置和存储介质,其中方法包括:获取待处理的图像集,采用预设算法预处理图像集,以获取预设比例的正/负样本图像;对获得的正/负样本图像进行特征提取,以生成正/负样本特征图;对获得的正/负样本特征图进行分类处理后,生成正/负样本预测框;结合损失函数和预设真实框集对正/负样本预测框进行匹配,并在匹配成功后,输出检测结果。实现了对课堂行为的准确识别,提升了目标行为的检测精度以及时效性,降低了对硬件设置的依赖,结果简单,易于制作训练集,有利于基于深度学习的目标检测算法在教学领域的进一步推广应用。可广泛的应用于计算机视觉处理技术领域。
-
公开(公告)号:CN108182416A
公开(公告)日:2018-06-19
申请号:CN201711488387.X
申请日:2017-12-30
申请人: 广州海昇计算机科技有限公司
摘要: 本发明公开了一种无人机监控场景下的人体行为识别方法、系统及装置,方法包括:通过无人机监控摄像头对所需的监控地点进行视频拍摄并预处理,得到样本视频;基于样本视频,对样本视频中人体行为进行分类,并创建卷积神经网络模型和训练测试集样本库,进而通过训练测试集样本库对卷积神经网络模型进行训练;将实际监控视频进行处理后输入至训练后的卷积神经网络模型中,得到实际监控视频中的人体行为的分类类型。本发明通过训练后的卷积神经网络模型能够实时自动对现实无人机平台监控场景下人体的各类行为进行识别,网络泛化能力较好,有效提升识别效果。本发明可广泛应用于行为识别领域中。
-
-