多速率实时仿真装置及输入接口、输出接口建模方法

    公开(公告)号:CN118607432A

    公开(公告)日:2024-09-06

    申请号:CN202410708149.9

    申请日:2024-06-03

    IPC分类号: G06F30/331 G06F30/343

    摘要: 本申请提供的多速率实时仿真装置及输入接口、输出接口建模方法,该装置包括大步长仿真系统、小步长仿真系统、输入接口和输出接口,两个仿真系统可以通过两个接口进行联合运行。其中,输入接口可以对大步长仿真系统的输入数据进行整合,并将整合后的数据传输至小步长仿真系统中进行仿真计算;而输出接口可以对小步长仿真系统的输出数据进行提取,并将提取到的数据传输至大步长仿真系统中进行仿真计算。因此,装置可以通过2条不同仿真步长的数据交互链路来提高系统开发和测试效率。此外,本申请在两个接口进行不同的接口建模方法设计,可以实现在同一开发环境中检测装置中逻辑设计的正确性,以提前排除装置在开发过程中的设计错误,缩短开发周期。

    一种高压直流输电系统
    4.
    发明授权

    公开(公告)号:CN108736506B

    公开(公告)日:2023-12-01

    申请号:CN201810875745.0

    申请日:2018-08-02

    IPC分类号: H02J3/36

    摘要: 本发明公开了一种高压直流输电系统,包括:一个送端整流换流站、两个受端逆变换流站及两个为双极线路结构的直流线路;所述送端整流换流站及两个所述受端逆变换流站均采用对称双极结构;所述两个受端逆变换流站与所述两条直流线路一一对应,并通过所述两条直流线路并联于所述送端整流换流站的出线端;所述送端整流换流站包括送端换流变压器及LCC换流器,所述受端逆变换流站包括VSC换流器及受端换流变压器。该高压直流输电系统结合了LCC‑HVDC和VSC‑HVDC的优点,可实现经济、可靠的输电。

    一种逆变换流器小干扰建模方法

    公开(公告)号:CN113224783B

    公开(公告)日:2022-12-06

    申请号:CN202110619994.5

    申请日:2021-06-03

    IPC分类号: H02J3/36 H02M7/48

    摘要: 本发明提供了一种逆变换流器小干扰建模方法。本发明通过建立换流器交流侧电压与直流电压的关系,建立向换流器注入的直流有功功率、无功功率与电压、电流的关系,计算流器交流侧线电压两自然换相点之间的角度与π的差值,修正换流器内部的角度关系与关断角的表达式,将逆变换流器的状态空间模型进行线性化得到考虑电压变化影响的逆变换流器小干扰模型。本发明建立的小干扰模型能够精确描述逆变换流器遭受小干扰后的暂态过程,模型精度更高。

    一种可变频可控电流源融冰装置

    公开(公告)号:CN113131428A

    公开(公告)日:2021-07-16

    申请号:CN202110528913.0

    申请日:2021-05-14

    IPC分类号: H02G7/16 H02J3/18

    摘要: 本申请公开了一种可变频可控电流源融冰装置,包括:电压源型换流阀包括第一电压源型换流阀组、第二电压源型换流阀组和第三电压源型换流阀组;第一电压源型换流阀组的输入端与交流电源输入相连接,且第一电压源型换流阀组的输出端与第一相融冰电路相连;第二电压源型换流阀组的输入端与交流电源输入相连接,且第二电压源型换流阀组的输出端与第二相融冰电路相连;第三电压源型换流阀组的输入端与交流电源输入相连接,且第三电压源型换流阀组的输出端与第三相融冰电路相连;隔离刀闸设置在第一相融冰电路、第二相融冰电路和第三相融冰电路上,用于控制电路通断。本申请能够解决现有融冰技术可控性较差,且应用场合受限,导致融冰效率较低的技术问题。

    交流故障快速检测的高压直流换相失败控制方法及装置

    公开(公告)号:CN112952824A

    公开(公告)日:2021-06-11

    申请号:CN202110352371.6

    申请日:2021-03-31

    IPC分类号: H02J3/00 H02J3/36 G01R31/08

    摘要: 本发明涉及一种交流故障快速检测的高压直流换相失败控制方法、装置及设备,应用于高压直流输电系统上,通过根据高压直流输电系统交流侧母线的三相电压确定单相故障发生相,即是故障相,然后,根据故障相求出此时相电压与相正序电压之间的最大相位偏移量,将具有最大偏移量的换相角与高压直流输电系统的锁相环输出的同步相位角相加得到修正同步相位角,采用修正同步相位角调整或修正所述故障相的触发角实现修正实际触发角的作用,显然,相比于现有技术,该交流故障快速检测的高压直流换相失败控制方法能够快速判别故障相,有效避免高压直流输电系统在交流故障期间锁相环的输出误差导致换相失败的结果,解决了现有高压直流输电系统换相失败的问题。