基于多图像协同注意力机制的植物叶片识别系统及方法

    公开(公告)号:CN114663766A

    公开(公告)日:2022-06-24

    申请号:CN202210350190.4

    申请日:2022-04-02

    申请人: 广西科学院

    摘要: 本发明涉及一种基于多图像协同注意力机制的植物叶片识别系统及方法,包括:客户端首先根据用户请求选择图像识别方式,基于图像处理模块将识别到的图像进行预处理操作,得到经过预处理后的图像;通过人机交互界面选取上传操作,基于图像上传模块进行上传并发送请求;服务器端接收到来自所述客户端的图像后,调用部署于服务器端的植物叶片识别模型对图像数据进行植物叶片识别,并返回结果至所述客户端的人机交互页面上实时展示识别结果。本发明利用弱监督方式训练基于多图像协同注意力模型,通过最小的代价,不需要人工标注信息即可训练一个高性能的植物叶片识别模型,便于实现。

    一种基于弱监督细粒度的植物叶片识别系统及方法

    公开(公告)号:CN114663765A

    公开(公告)日:2022-06-24

    申请号:CN202210349724.1

    申请日:2022-04-02

    申请人: 广西科学院

    摘要: 本发明公开一种基于弱监督细粒度的植物叶片识别系统及方法,包括,客户端,服务器;所述客户端与所述服务器连接;其中,所述客户端用于获取植物叶片图像及识别请求,并对识别结果进行展示;所述服务器用于接收植物叶片图像及识别请求,并基于识别请求通过弱监督细粒度模型对所述植物叶片图像进行识别,并将识别请求及识别结果存储至数据库,其中服务器内包含有数据库。本发明能够对叶片图像进行准确识别,同时构建识别应用系统,通过获取植物的叶片图像,即可高效率高准确率地识别出植物的物种类别。