基于物理约束的自适应神经网络海洋垂直混合参数化方法

    公开(公告)号:CN116776731A

    公开(公告)日:2023-09-19

    申请号:CN202310746326.8

    申请日:2023-06-25

    摘要: 本发明涉及一种基于物理约束的自适应神经网络海洋垂直混合参数化方法,主要针对海洋垂直混合参数化过程精度不高的问题,本发明构建了一个自适应网络模型,在海上实际站点观测数据的基础上加入一定的人工合成数据,构成训练集进行学习,构建参数化神经网络,参数化神经网络由四个自适应全连接模块AFCM堆叠构成,学习不同深度的海洋密度ρ、剪切平方S2、分层N2、速度U与垂直扩散系数Kt的关系,然后通过融合学习到的特征预测垂直混合参数化过程中的垂直扩散系数Kt,在训练过程和网络推理过程中引入物理约束来提高网络的预测精度,使得本发明的参数化网络在精度和泛化能力方面比现有技术表现更好。