-
公开(公告)号:CN117670679A
公开(公告)日:2024-03-08
申请号:CN202311680992.2
申请日:2023-12-08
Applicant: 杭州电子科技大学
IPC: G06T3/4053 , G06N3/0455 , G06N3/0464
Abstract: 本发明公开了一种基于全局分布学习的真实图像超分辨率重建方法。首先获取数据集,进行训练集和测试集的划分,然后对数据集中的图像进行格式转换,裁剪和数据增强操作;然后构建基于全局分布学习的真实图像超分辨率重建网络,包括全局分布学习模块、采样点计算模块和图像重建模块;通过低分辨率图像学习出图像的真实场景分布函数,再估计出采样点坐标,从而进行重新采样,构建出超分辨率图像;最后通过预处理后的数据集训练构建的真实图像超分辨率重建网络。相比现有的方法,只能重建整数倍比例因子的超分辨率图像,该发明能够重建出任意比例因子的超分辨率图像,且能获得更好的性能指标。
-
公开(公告)号:CN115409713A
公开(公告)日:2022-11-29
申请号:CN202211201813.8
申请日:2022-09-29
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种高效实时的单张图像超分变率重建系统及方法,单图像超分辨率重建方法首先进行数据预处理,然后构建高效实时的图像超分辨率重建网络;通过预处理后的数据训练构建好的图像超分辨重建网络,使网络具有图像超分辨重建的效果;最后通过训练好的图像超分辨重建网络完成单图像超分辨率重建。单图像超分辨重建系统,包括数据预处理模块、网络构建模块、训练模块和图像超分辨重建模块。本发明减少网络模型参数量,使得网络模型的计算量减少,资源消耗少;在性能和效率方便达到很好的平衡;能够部署在移动端设备上。
-