-
公开(公告)号:CN119990198A
公开(公告)日:2025-05-13
申请号:CN202510470143.7
申请日:2025-04-15
Applicant: 杭州电子科技大学
IPC: G06N3/049 , G06N3/048 , G06N3/0464 , G06N3/08 , G06V10/764 , G06V10/82
Abstract: 本发明公开了一种基于自适应阈值整数激活神经元的脉冲神经网络训练方法,具体包括以下步骤:输入神经形态数据流或者静态图像,经过时间编码生成脉冲序列,以此作为模型的输入;在主干网络中,使用基于自适应阈值整值激活的LIF神经元的SNN模块进行下采样和提取多尺度特征;以及将视觉任务分为图像识别,图像检测与图像分割,分别接入不同的处理模块进行处理输出;本发明通过在Meta‑SpikeFormer元模块的基础上,使用一种基于自适应阈值整值激活的LIF神经元的脉冲神经网络,减小训练时的内存开销,提高直接训练的网络性能,拓展脉冲神经网络的应用范围,让网络更好地应用到图像分类,识别与分割任务中。
-
公开(公告)号:CN113255634A
公开(公告)日:2021-08-13
申请号:CN202110810233.8
申请日:2021-07-18
Applicant: 杭州电子科技大学
Abstract: 本发明公开了基于改进Yolov5的车载移动端目标检测方法。本发明通过RFP(Receptive Field Pyramids)模块对Yolov5网络进行改进,在Yolov5网络的Neck部分的特征金字塔后加入RFP模块;利用数据集对改进后的网络进行训练,得到权重模型。然后将训练好的模型移植到车载移动端上进行实时检测识别。通过在特征金字塔后加入RFP模块,使Yolov5网络原本在Neck层输出的特征图能够自适应的具有不同的感受域,提高其对多尺度目标的识别精度,与此同时模型大小较小并且识别速度较快。解决了模型过大而无法在车载板上实时检测以及对多尺度目标识别精确率不高的问题。
-