-
公开(公告)号:CN111537903B
公开(公告)日:2022-05-20
申请号:CN202010467271.3
申请日:2020-05-28
Applicant: 杭州电子科技大学
IPC: G01R31/388 , G01R31/389 , G01R31/367 , G01R31/36
Abstract: 本发明公开一种基于HCKF的电池SOC估计方法。在电池电化学模型的基础上,通过最小二乘法辨识参数,CKF作为确定采样型滤波算法,处理非线性方程时根据系统状态先验概率密度分布的均值和协方差按照一定的采样策略生成点集,然后将点集中的每个采样点直接进行非线性传播,最后通过加权求和计算出系统状态后验概率密度分布的均值和协方差。不需要对非线性方程进行线性化,消除了线性化误差,滤波算法迭代过程中也不需要计算EKF中的雅各比矩阵,更容易在实际中使用。提出将CKF和H_∞滤波器结合的HCKF算法用于估计SOC,有效避免了当存在电池模型误差和未知的测量噪声特性等问题时SOC估计不够准确的情况,大大提高了鲁棒性。
-
公开(公告)号:CN111537903A
公开(公告)日:2020-08-14
申请号:CN202010467271.3
申请日:2020-05-28
Applicant: 杭州电子科技大学
IPC: G01R31/388 , G01R31/389 , G01R31/367 , G01R31/36
Abstract: 本发明公开一种基于HCKF的电池SOC估计方法。在电池电化学模型的基础上,通过最小二乘法辨识参数,CKF作为确定采样型滤波算法,处理非线性方程时根据系统状态先验概率密度分布的均值和协方差按照一定的采样策略生成点集,然后将点集中的每个采样点直接进行非线性传播,最后通过加权求和计算出系统状态后验概率密度分布的均值和协方差。不需要对非线性方程进行线性化,消除了线性化误差,滤波算法迭代过程中也不需要计算EKF中的雅各比矩阵,更容易在实际中使用。提出将CKF和H_∞滤波器结合的HCKF算法用于估计SOC,有效避免了当存在电池模型误差和未知的测量噪声特性等问题时SOC估计不够准确的情况,大大提高了鲁棒性。
-