-
公开(公告)号:CN112269134B
公开(公告)日:2022-12-02
申请号:CN202010946770.0
申请日:2020-09-10
Applicant: 杭州电子科技大学
IPC: G01R31/388 , G01R31/389 , G01R31/392 , G01R31/36
Abstract: 本发明公开了一种基于深度学习的电池SOC和SOH联合估计方法。具体步骤包括电池数据的采集、对数据的预处理、搭建SE‑CNN神经网络和BRNN神经网络、构建并训练估算模型,最后利用训练过的SE‑CNN网络估算电池的SOH值、利用BRNN网络估算电池的SOC值。本发明利用深度学习的参量自学习能力,减少了在估算电池的剩余容量与最大可用容量之比与电池容量和内阻的变化关系过程中的计算量,并考虑SOH和SOC之间的关联,进行联合估计,增强预测模型的稳定性,提高计算的准确性,弥补了现有技术中各种估算方法测量时间长、测量条件要求高、计算量过高以及估算精度低的不足,为各类电池管理系统提供一种快速、准确的SOH和SOC估算方法。
-
公开(公告)号:CN112269134A
公开(公告)日:2021-01-26
申请号:CN202010946770.0
申请日:2020-09-10
Applicant: 杭州电子科技大学
IPC: G01R31/388 , G01R31/389 , G01R31/392 , G01R31/36
Abstract: 本发明公开了一种基于深度学习的电池SOC和SOH联合估计方法。具体步骤包括电池数据的采集、对数据的预处理、搭建SE‑CNN神经网络和BRNN神经网络、构建并训练估算模型,最后利用训练过的SE‑CNN网络估算电池的SOH值、利用BRNN网络估算电池的SOC值。本发明利用深度学习的参量自学习能力,减少了在估算电池的剩余容量与最大可用容量之比与电池容量和内阻的变化关系过程中的计算量,并考虑SOH和SOC之间的关联,进行联合估计,增强预测模型的稳定性,提高计算的准确性,弥补了现有技术中各种估算方法测量时间长、测量条件要求高、计算量过高以及估算精度低的不足,为各类电池管理系统提供一种快速、准确的SOH和SOC估算方法。
-