-
公开(公告)号:CN117029858A
公开(公告)日:2023-11-10
申请号:CN202311052725.0
申请日:2023-08-21
Applicant: 杭州电子科技大学丽水研究院
IPC: G01C21/34
Abstract: 本发明公开了一种基于改进式蚁群算法的外卖员路径规划系统及方法。本发明系统包括订单信息授权模块、外卖员当前位置获取模块、商家及配送位置获取模块、路况匹配模块、外卖员配送路径规划模块和外卖员配送路径导航模块。相比于外卖员自行寻找配送路径,本发明专利提出的外卖员路径规划系统通过小程序获取外卖员订单信息,系统将外卖员位置以及商家位置和订单配送位置与地图上的路况信息进行对应,并且通过改进式遗传算法对外卖员配送路径进行规划。同时系统及时更新订单信息,及时对路径进行重新规划,提高了外卖员配送的效率。
-
公开(公告)号:CN118196388A
公开(公告)日:2024-06-14
申请号:CN202410359770.9
申请日:2024-03-27
Applicant: 杭州电子科技大学丽水研究院
IPC: G06V10/25 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/82 , G06V20/10 , G06N3/0455 , G06N3/0495 , G06N3/0464 , G06N3/084 , G06N3/0985
Abstract: 本发明公开了一种基于卷积的轻量级遥感图像显著目标检测方法,通过使用经过轻量化修改后的卷积神经网络,降低参数和计算复杂度,提高网络的推理速度;通过使用增强模块分别在空间和通道维度上对编码器特征进行增强,使其包含更准确信息;通过解码器模块逐步融合增强后特征,恢复特征图尺度,得到最终预测图。本发明模型拥有更小的参数量和计算复杂度,降低了对计算资源的需求,加快了推理速度,可以满足在边缘设备上进行实时运行的需求,生成的遥感图像显著性预测图更加准确。
-
公开(公告)号:CN118469844A
公开(公告)日:2024-08-09
申请号:CN202410673350.8
申请日:2024-05-28
Applicant: 杭州电子科技大学丽水研究院
IPC: G06T5/60 , G06T5/73 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种基于Transformer和双域选择机制的图像散焦去模糊方法,包括步骤如下:步骤一:数据集获取及预处理;步骤二:构建一种基于Transformer和双域选择机制的图像散焦去模糊网络模型;步骤三:使用预处理后的数据集训练基于Transformer和双域选择机制的图像散焦去模糊的网络模型;步骤四:通过训练好的网络模型完成图像散焦去模糊测试。本发明通过深度提取初始特征和末尾特征,并通过剔除特征中的低频信息来增强高频信息。采用端到端的方法构建神经网络,其中利用Transformer模块在一个尺度上提取高质量的图像信息,并通过双域选择模块来保持空间细节的精确性。
-
公开(公告)号:CN117274855A
公开(公告)日:2023-12-22
申请号:CN202311058507.8
申请日:2023-08-22
Applicant: 杭州电子科技大学丽水研究院
Inventor: 颜成钢 , 金裕达 , 郭雨晨 , 赵思成 , 孙垚棋 , 朱尊杰 , 高宇涵 , 王鸿奎 , 赵治栋 , 殷海兵 , 王帅 , 张继勇 , 李宗鹏 , 丁贵广 , 付莹 , 李晓林 , 沙雏淋
IPC: G06V20/40 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了一种基于多维度信息交互的视频特征提取方法,首先进行数据集获取,采用现有的视频分类数据集;构建基于多维度信息交互的视频特征提取网络,包括前缀卷积网络、时空可分离编码器和视频分类器;之后构建损失函数,最后根据获取的数据集对构建的基于多维度信息交互的视频特征提取网络进行训练。本发明将时序信息交互与空间信息交互相结合,弥补了两者不能共存的短板。使用前缀卷积网络以及时间空间可分离注意力机制,减少了大量的算力开销。
-
公开(公告)号:CN117217991A
公开(公告)日:2023-12-12
申请号:CN202311026041.3
申请日:2023-08-15
Applicant: 杭州电子科技大学丽水研究院
Inventor: 颜成钢 , 张文豪 , 陈雨中 , 魏宇鑫 , 汪奇挺 , 傅晟 , 付莹 , 郭雨晨 , 赵思成 , 孙垚棋 , 朱尊杰 , 高宇涵 , 王鸿奎 , 赵治栋 , 殷海兵 , 王帅 , 张继勇 , 李宗鹏 , 丁贵广
IPC: G06T3/40 , G06N3/0455 , G06N3/08 , G06N5/046
Abstract: 本发明公开了一种基于TensorRT的视频超分推理方法及装置,首先对视频超分网络进行训练;然后对网络算子进行分析,对常用算子进行整理,对不支持算子进行编写,对于可优化算子做算子融合;最后对于完整的视频超分网络结构,使用TensorRT编写并生成序列化引擎进行推理。本发明提出了视频超分推理落地的新方法,即是使用TensorRT该推理框架进行部署和加速,建立常用算子库将TensorRT算子和Pytorch算子进行对齐,优化部署过程,并能够比在训练框架下的推理有更好的速度和更低的显存占用。
-
-
-
-