一种轻量化低光目标检测方法
    1.
    发明公开

    公开(公告)号:CN116401547A

    公开(公告)日:2023-07-07

    申请号:CN202310353380.6

    申请日:2023-04-04

    Abstract: 本发明涉及目标检测技术领域,具体涉及一种轻量化低光目标检测方法,对Exdark数据集的训练集进行离线增强,得到增强训练集;将增强训练集与原始数据集的训练集进行混合,得到混合训练集;对混合训练集进行预处理,得到处理数据集,增强处理数据集的泛化性,自适应生成匹配处理数据集样本的特征层锚框尺寸;改进YOLOv5基准网络模型,引入锚框尺寸进行训练,得到权重模型;将待检测图片输入检测框架,并基于权重模型使用NMS进行后处理,去除多余的检测框,得到检测结果,该方法在特征融合部分使用DFC注意力两个方向的解耦化FC操作聚合全局信息,同时大幅减少模型整体的参数量与计算量,从轻量化角度降低了原有目标检测网络的复杂度。

    一种域转移的自监督机器异常声音检测方法

    公开(公告)号:CN115376554B

    公开(公告)日:2025-04-15

    申请号:CN202210863510.6

    申请日:2022-07-21

    Abstract: 本发明涉及计算机技术领域,具体涉及一种域转移的自监督机器异常声音检测方法,分别设计时频域特征提取网络、动态图卷积网络和域自适应网络;通过时域特征提取网络捕获声音信号的空间特征信息和时域交互的特征信息,得到特征向量,提高了域转移下机器异常声音检测的性能稳定性,通过动态图卷积网络捕捉特征向量的域转移之间的依赖关系,提高了模型对域转移特征感知能力,基于依赖关系通过域自适应网络补偿特征向量,得到检测结果,能补偿由于域移动造成的模型性能下降,提高了自监督环境下模型对异常声音的域转移自适应能力,解决现有检测方法学习不同域转移的声音特征,检测效果不稳定的问题。

    适用于低照度环境下的改进版YOLOv5目标检测方法

    公开(公告)号:CN115512206A

    公开(公告)日:2022-12-23

    申请号:CN202211278019.3

    申请日:2022-10-19

    Abstract: 本发明涉及目标检测技术领域,具体涉及一种适用于低照度环境下的改进版YOLOv5目标检测方法,包括使用图像增强算法对低照度的数据集的训练集进行离线增强,得到增强数据集;使用增强数据集和原始训练集进行配对混合,得到混合数据集;对基准网络进行改进,得到改进网络模型;使用混合数据集对改进网络模型进行训练,得到目标检测网络模型;将待检测图片输入目标检测网络模型进行训练,得到检测结果。本发明通过混合增强训练方式,将低照度的数据集通过GAN算法进行增强,并与原始的训练集进行混合匹配,有效抑制直接使用增强算法所带来的特征破坏问题,解决了现有的目标检测方法对低照度环境下目标检测精确度较低的问题。

    一种域转移的自监督机器异常声音检测方法

    公开(公告)号:CN115376554A

    公开(公告)日:2022-11-22

    申请号:CN202210863510.6

    申请日:2022-07-21

    Abstract: 本发明涉及计算机技术领域,具体涉及一种域转移的自监督机器异常声音检测方法,分别设计时频域特征提取网络、动态图卷积网络和域自适应网络;通过时域特征提取网络捕获声音信号的空间特征信息和时域交互的特征信息,得到特征向量,提高了域转移下机器异常声音检测的性能稳定性,通过动态图卷积网络捕捉特征向量的域转移之间的依赖关系,提高了模型对域转移特征感知能力,基于依赖关系通过域自适应网络补偿特征向量,得到检测结果,能补偿由于域移动造成的模型性能下降,提高了自监督环境下模型对异常声音的域转移自适应能力,解决现有检测方法学习不同域转移的声音特征,检测效果不稳定的问题。

Patent Agency Ranking