-
公开(公告)号:CN113143409B
公开(公告)日:2024-11-08
申请号:CN202110526681.5
申请日:2021-05-14
申请人: 桂林电子科技大学
IPC分类号: A61B17/3203 , A61B17/16
摘要: 本发明提供一种低损伤水雾介导激光生物硬组织治疗装置及其使用方法,包括激光发生器、高压供气系统、供液系统、控制器、线缆和操作手柄;激光接入操作手柄内的光路系统,并通过出光光纤输出;出光光纤尾端设置激光吸收层,激光吸收层中部开设出光窗口,出光光纤外侧环绕设置高压液腔,供液系统接入高压液腔;高压液腔底部开设具有一定锥度并指向激光吸收层及其下方的喷嘴,供液系统包括提供电解质溶液的溶液供给系统。本发明提出的治疗装置,可对水雾颗粒进行两级获能转化为高能状态,克服现有激光治疗装置需采用高成本Er,Cr:YSGG晶体激光器的问题,并能保证较好的激光生物硬组织治疗效果,有效降低治疗过程的损伤。
-
公开(公告)号:CN109465252B
公开(公告)日:2023-09-26
申请号:CN201910026271.7
申请日:2019-01-11
申请人: 桂林电子科技大学
摘要: 本发明公开了一种超声辅助激光水下清洗装置和方法,清洗加工模块包括工件、水箱和平场聚焦透镜,工件放置于水箱内的水下,平场聚焦透镜设于水面上方;工作台模块包括可在X/Y向移动的平台,水箱放置于平台上;超声能量模块包括超声换能器,超声换能器附着于水箱上;其激光扫描模块包括振镜和多边形扫描反射镜,多边形扫描反射镜可转动的设于平场聚焦透镜上方,振镜对应于多边形扫描反射镜设置;振镜将入射激光束向多边形扫描反射镜反射,多边形扫描反射镜将入射激光束向平场聚焦透镜反射,平场聚焦透镜将两次反射的入射激光束转变为工作激光束打在工件上而产生空化气泡。本发明提高了清洗效率和效果,增加了工件的使用寿命。
-
公开(公告)号:CN115778533A
公开(公告)日:2023-03-14
申请号:CN202211078938.6
申请日:2022-09-05
申请人: 桂林电子科技大学
摘要: 本发明是一种基于稳定环形水束的激光消融生物硬组织的装置及方法,本发明包含两种不同的喷嘴结构,且都能生成稳定空心环形水束。第一种结构激光通过反射镜反射到聚焦透镜上,然后通过聚焦耦合到空芯石英波导光纤中,最后通过空心环形水束作用于生物硬组织表面。第二种结构,激光束经聚焦透镜聚焦后在气腔中向下传输,穿过空心环形水束后作用于生物硬组织表面。本发明相比现有激光消融生物组织方法,光束在环形水束内部的气体中传输,减少了水射流冲击使液体溅射等外部干扰因素对激光能量的吸收,提高了激光束的能量利用率;此外,借助同轴环形水束的冲击冷却作用将生物硬组织中残渣的进一步去除,能够更有效控制消融过程中的温度。
-
公开(公告)号:CN115365649A
公开(公告)日:2022-11-22
申请号:CN202211169880.6
申请日:2022-09-26
申请人: 桂林电子科技大学
IPC分类号: B23K26/14 , B23K26/146 , B23K26/36 , B23K26/70
摘要: 本发明提供一种水射流辅助激光诱导等离子体加工方法及装置,包括依次设置的光路系统、耦合单元、工作台单元、液压系统。光路系统发射高功率密度的激光束经聚焦进入耦合单元,液压系统提供稳定的无级调压的高压水流至耦合单元,由耦合单元的喷嘴生成稳定的高速水射流。高功率密度激光束聚焦于水射流中,在焦点区域产生等离子体,加工工件表面。本发明的优点是:不需要在工件表面生成静态水层,避免加工过程中水层晃动影响聚焦稳定性,高速水射流可以及时将加工过程中产生的空化气泡和熔渣去除,并带走工件表面的热量,有效冷却工件,提高加工质量和加工效率。
-
公开(公告)号:CN114810686A
公开(公告)日:2022-07-29
申请号:CN202210267336.9
申请日:2022-03-18
申请人: 桂林电子科技大学
IPC分类号: F15B1/02 , F15B21/041 , F15B19/00 , F15B13/02 , F15B1/24
摘要: 本发明提供一种压力自适应气体活塞式蓄能器系统及方法,包括气源、气体比例调压阀、压力传感器、活塞式蓄能器和上位机等,所述活塞式蓄能器通过活塞两侧面积实现对气体压力的放大作用可实现较低的工作气压对高压流体的脉动控制;在气动回路中,设置压力传感器和比例减压阀形成闭环回路,通过压力调控算法调控活塞式蓄能器内气压;在液压主回路设置压力传感器采集压力信号反馈给上位机利用神经网络或固定算法计算出所需气压压力对蓄能器内气压进行调整,以获得最佳的脉动衰减效果。
-
公开(公告)号:CN110227884A
公开(公告)日:2019-09-13
申请号:CN201910380752.8
申请日:2019-05-08
申请人: 桂林电子科技大学
摘要: 本发明公开了一种基于无衍射光路设计的水导激光加工系统及方法,其光束传输聚焦耦合单元包括激光发射器和光束传输变换装置,激光发射器的前方设置倾斜的反光镜,设于反光镜下方的光束传输变换装置包括同轴的激光扩束模块、生成无衍射光束模块、玻璃块和喷嘴,玻璃块和喷嘴分别设于耦合腔体的顶部和底部;其工作台单元设于喷嘴下方,包括三维移动的工作台,夹持台板设于工作台上的水槽内,工件装夹于夹持台板上;其供液单元的泵管连通耦合腔体的进水口,喷嘴处产生向下的水束光纤,无衍射光束与水束光纤耦合后作用在工件上。本发明可获得较小的聚焦中心光斑及更长的准直区,降低了聚焦激光束与水束光纤的耦合难度,提高了耦合效率。
-
公开(公告)号:CN106312302B
公开(公告)日:2019-02-22
申请号:CN201610951930.4
申请日:2016-10-27
申请人: 桂林电子科技大学
IPC分类号: B23K26/046 , B23K26/06 , B23K26/362 , B23K26/146
摘要: 本发明为一种自聚焦激光加工装置,夹持机构在透镜和工作台之间固定一个盛放非线性介质的容器。激光束经透镜聚焦于非线性介质的表面,透镜聚焦后的光束进入非线性介质其中传递产生自聚焦,经透镜和非线性介质的两次聚焦,离开容器的激光束直径极小,直线传播到达工件表面。容器内非线性介质的深度,即自聚焦距离L与激光束的能量及所采用的非线性介质的折射率有关。还配有水射流辅助装置,工件表面激光聚焦点和射流喷射点中心重合。在工件表面水射流的冲击带走激光去除的残渣和热量。透镜聚焦与自聚焦相结合,减少激光束直径近一半,提高激光束能量密度。自聚焦后激光准直传递,发散角小,有利纵深刻蚀,增加加工的深度,保证刻蚀精度效率。
-
公开(公告)号:CN108581223A
公开(公告)日:2018-09-28
申请号:CN201810383169.8
申请日:2018-04-26
申请人: 桂林电子科技大学
IPC分类号: B23K26/38 , B23K26/146 , B23K26/70
摘要: 本发明为一种水导激光加工方法和系统,电极产生非匀强电场对水束作用,偏转后的水束竖直向下,激光聚焦于竖直向下的水束内,水束引导激光作用于工件。本系统工件固定于工作台上的水槽底面,配有1套偏转水束装置,喷嘴产生的水束与激光束的中心线处于同一平面,水束下方设置电极,在电极非匀强电场使水束偏转竖直向下,激光聚焦于竖直向下的水束内,该水束引导激光束作用于工作台上的工件。还可配2~5套偏转水束装置,各水束汇聚为竖直向下的总水束引导激光束。本发明激光的高温软化的工件表面材料同时水束冷却加工区域减小热损伤。本发明无需与激光束中心线一致的喷嘴,喷嘴不会烧蚀,显著降低装置的成本,有利于水导激光的推广应用。
-
公开(公告)号:CN108406101A
公开(公告)日:2018-08-17
申请号:CN201810454730.7
申请日:2018-05-14
申请人: 桂林电子科技大学
IPC分类号: B23K26/08
摘要: 本发明公开了一种玻璃微流道的激光复合加工装置,包括工作台,所述工作台的顶部中间位置处安装有齿轮支撑杆,所述齿轮支撑杆共设置有两个,且两个齿轮支撑杆的中间套设有齿轮轴,所述齿轮轴的一侧外壁通过螺栓固定连接有第二电机,且齿轮轴的外壁上套设有小齿轮,所述小齿轮的外壁啮合连接有大齿轮,所述大齿轮的内壁套设有旋转环,所述旋转环的外壁上套设有大滑轮,本发明设置了两种方向螺纹的丝杠结构,可使两个方向的玻璃微流道同时朝向中间移动,解决了单一方向送料的问题,避免无法准确定位进行复合加工,同时设置了可360°旋转加工的旋转环,解决了无法适配于各种不同形状尺寸大小的玻璃微流道的问题。
-
公开(公告)号:CN108326554B
公开(公告)日:2024-05-10
申请号:CN201810325364.5
申请日:2018-04-12
申请人: 桂林电子科技大学
IPC分类号: B23P23/00
摘要: 本发明为一种激光水射流复合加工系统,射流喷嘴出射水射流,水射流落点在工件表面的加工路径上。激光器产生的激光束在处于保护壳体内的导引光纤中传播,导引光纤末端连接金刚石导引头。金刚石导引头的导光端与工件表面的距离小于100微米,激光在金刚石导引头内经多次全反射汇聚为直线光束输出,直接作用于水中工件表面的加工路径上。本发明激光束的光路处于保护壳体内,保证光束传播过程中不受射流溅射水雾的干扰,激光束和高压射流协同作用,准确高效地去除预定加工路径上的材料,激光光路稳定,激光光斑半径缩小,划切线宽缩小,提高加工精度和质量。
-
-
-
-
-
-
-
-
-