一种基于特征偏差对齐的遥感影像二值变化检测方法

    公开(公告)号:CN113378727A

    公开(公告)日:2021-09-10

    申请号:CN202110665192.8

    申请日:2021-06-16

    摘要: 本发明公开了一种基于特征偏差对齐的遥感影像二值变化检测方法,包括:步骤1:构造双时相遥感影像二值变化检测数据集并进行预处理;步骤2:构建基于特征偏差对齐的二值变化检测模型,并给定双时相遥感影像获得变化区域预测结果及变化区域辅助预测图;步骤3:使用真实变化区域标签结果与预测变化区域结果及变化区域辅助预测图分别计算主损失函数和辅助损失函数,根据损失对梯度进行反向传播更新模型,直至损失值收敛时终止训练,保存模型结构及模型权重;步骤4:使用步骤3训练好的模型权重对测试集数据进行预测。本发明可以有效的解决当双时相遥感影像由于多视角拍摄、高层建筑物过多或地形起伏较大等因素引起的变化区域误检现象。

    基于多模态特征融合的双时相遥感影像语义变化检测方法

    公开(公告)号:CN112488025A

    公开(公告)日:2021-03-12

    申请号:CN202011451412.9

    申请日:2020-12-10

    摘要: 本发明公开了一种基于多模态特征融合的双时相遥感影像语义变化检测方法,包括以下几个步骤:步骤A:对多时相遥感影像数据集进行数据增强的预处理;步骤B:构建基于多模态特征融合的卷积神经网络模型,利用数据集训练卷积神经网络,获得训练模型;步骤C:利用训练模型对数据集进行数据清理;步骤D:利用清理后的数据重新训练模型,并对测试数据进行测试得到预测结果;步骤E:变化检测预测结果后处理。本发明提供的基于多模态特征融合的双时相遥感影像语义变化检测方法,可以在检测出变化区域的同时检测出区域变化前后的类别,应用范围更广泛,同时满足端到端处理,不需要人工进行其他处理,便于工程应用。

    一种跨平台的时空大数据分布式处理方法及系统

    公开(公告)号:CN112732852B

    公开(公告)日:2022-09-13

    申请号:CN202011643656.7

    申请日:2020-12-31

    IPC分类号: G06F16/29 G06F16/25 G06F16/27

    摘要: 本发明涉及一种跨平台的时空大数据分布式处理方法及软件,在复用传统的地理信息系统内核的基础上,提出了一种跨平台的时空大数据管理方法,运用Apache Beam模型,对空间数据进行高效的存储,避免了用户在不同的分布式计算平台上分别编写数据管理程序,大大提升了开发效率;提出了一种改进的分布式空间数据并行处理方法,在Apache Beam提供的对非空间数据进行并行处理方法的基础上,兼容了对如插值分析、密度分析等需要同时对多个输入点要素进行处理的空间分析算法的并行化。避免了用户编写自己的空间数据处理算法,并使得需要同时对多个输入点要素进行处理的空间分析算法的并行化成为可能,能够对海量空间数据进行高效的处理和分析。

    一种基于切片下采样的模型轻量化方法、设备及存储介质

    公开(公告)号:CN116090541A

    公开(公告)日:2023-05-09

    申请号:CN202310002001.9

    申请日:2023-01-03

    摘要: 本发明公开了一种基于切片下采样的模型轻量化方法、设备及存储介质。该发明通过特征切片的方式实现模型的下采样操作,紧接着追加一个深度可分离卷积,以提取下采样所得特征映射层的高层语义信息。它可以在明显降低参数量和计算量的情况下保持或者轻微提升模型精度。与现有技术相比,本发明确保了下采样过程中图像特征信息的全量继承,在显著降低模型参数量的情况下可以有效维持模型性能,有助于提升深度学习模型的训练和推理速度,减少设备资源占用和降低功耗。为轻量化深度学习模型的构建提供了新的参考和思路,对于在资源受限的边缘计算设备上部署和应用深度学习模型具有重要意义。